JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 1-12.doi: 10.6040/j.issn.1671-9352.0.2023.340
Shengqiang LIU1(),Ningjuan MA2
CLC Number:
1 | BRAUER F , CASTILLO-CHAVEZ C . Mathematical models in population biology and epidemiology[M]. New York: Springer, 2012. |
2 |
BRADY O J , GETHING P W , BHATT S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus[J]. PLoS Neglected Tropical Diseases, 2012, 6 (8): 1760- 1775.
doi: 10.1371/journal.pntd.0001760 |
3 |
BHATT S , GETHING P W , BRADY O J , et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446): 504- 507.
doi: 10.1038/nature12060 |
4 | 马知恩, 周义仓, 吴建宏. 传染病的建模与动力学[M]. 北京: 高等教育出版社, 2009. |
MA Zhieng , ZHOU Yicang , WU Jianhong . Modeling and dynamics of infectious diseases[M]. Beijing: Higher Education Press, 2009. | |
5 | WU Hongjia. Research on data analysis and modeling of sudden major infectious diseases[D]. Tianjin: Tiangong University, 2021. |
6 | KERMACK W O , MCKENDRICK A G . A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 115 (772): 700- 721. |
7 | KERMACK W O , MCKENDRICK A G . Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 138 (834): 55- 83. |
8 |
ALLEN I J S . Some discrete-time SI, SIR and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124, 83- 105.
doi: 10.1016/0025-5564(94)90025-6 |
9 |
ALLEN I J S , Burgin A M . Comparison of deterministic and stochastic SIS and SIR models in discrete time[J]. Mathematical Biosciences, 2000, 163, 1- 33.
doi: 10.1016/S0025-5564(99)00047-4 |
10 |
BRAUER F . Some simple nosocomial disease transmission models[J]. Bulletin of Mathematical Biology, 2015, 77 (3): 460- 469.
doi: 10.1007/s11538-015-0061-0 |
11 |
FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675 |
12 |
ZHAO Shi , MUSA S S , LIN Qianying , et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak[J]. Journal of Clinical Medicine, 2020, 9 (2): 388.
doi: 10.3390/jcm9020388 |
13 |
LI Qun , GUAN Xuhua , WU Peng , et al. Early transmissiodynamics in Wuhan, China, of novel coronavirus—infected pneumonia[J]. New England Journal of Medicine, 2020, 382 (13): 1199- 1207.
doi: 10.1056/NEJMoa2001316 |
14 | WU J T , KATHY L , LEUNG G M . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet(London, England), 2020, 395 (10225): 689- 697. |
15 |
TANG Biao , WANG Xian , LI Qiqn , et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9 (2): 462- 463.
doi: 10.3390/jcm9020462 |
16 |
SHANAFELT D W , JONES G , LIMA M , et al. Forecasting the 2001 foot-and-mouth disease epidemic in the UK[J]. Ecohealth, 2018, 15 (2): 338- 347.
doi: 10.1007/s10393-017-1293-2 |
17 |
WONG N S , LEE S S , MITCHELL KM , et al. Impact of pre-event testing and quarantine on reducing the risk of COVID-19 epidemic rebound: a modelling study[J]. BMC Infectious Diseases, 2022, 22 (1): 83.
doi: 10.1186/s12879-021-06963-2 |
18 |
SUN Ruoyan , SHI Junping . Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates[J]. Applied Mathematics and Computation, 2011, 218 (2): 280- 286.
doi: 10.1016/j.amc.2011.05.056 |
19 | MUROYA Y , ENATSU Y , LI H X . A note on the global stability of an SEIR epidemic model with constant latency time and infectious period[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 18 (1): 173- 183. |
20 | CHEN Xiaodan D , CUI Renhao . Global stability in a diffusive cholera epidemic model with nonlinear incidence[J]. Applied Mathematics Letters, 2020, 111, 106596. |
21 |
WANG Xinxin , LIU Shengqiang , WANG Lin , et al. An epidemic patchy model with entry-exit screening[J]. Bulletin of Mathematical Biology, 2015, 77 (7): 1237- 1255.
doi: 10.1007/s11538-015-0084-6 |
22 |
FOY H M , COONEY M K , ALLAN I . Longitudinal studies of types A and B influenza among Seattle school children and families[J]. Journal of Infectious Diseases, 1976, 134 (4): 362- 369.
doi: 10.1093/infdis/134.4.362 |
23 |
LOEB M , RUSSELL M L , MOSS L , et al. Effect of influenza vaccination of children on infection rates in Hutterite communities: a randomized trial[J]. Journal of the American Medical Association, 2010, 303 (10): 943- 950.
doi: 10.1001/jama.2010.250 |
24 |
MUROYA Y , ENATSUB Y , KUNIYA T . Global stability for a multi-group SIRS epidemic model with varying population sizes[J]. Nonlinear Analysis(Real World Applications), 2013, 14 (3): 1693- 1704.
doi: 10.1016/j.nonrwa.2012.11.005 |
25 |
WANG Jinliang , WANG Jing , KUNIYA T . Analysis of an age-structured multi-group heroin epidemic model[J]. Applied Mathematics and Computation, 2019, 347, 78- 100.
doi: 10.1016/j.amc.2018.11.012 |
26 |
WANG Xia , WU Huilin , TANG Sanyi . Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 Control Using SEIR modeling approach[J]. Bulletin of Mathematical Biology, 2022, 84 (10): 108- 120.
doi: 10.1007/s11538-022-01064-w |
27 | BRAUER F . Early estimates of epidemic final sizes[J]. Journal of Biological Dynamics, 2018, 13 (SI): 23- 30. |
28 | BRAUER F . The final size of a serious epidemic[J]. Bulletin of Mathematical Biology, 2018, 81 (3): 869- 877. |
29 | CUI Jingan , ZHANG Yannan , FENG Zhilan . Influence of non-homogeneous mixing on final epidemic size in a meta-population model[J]. Journal of Biological Dynamics, 2018, 13 (SI): 31- 46. |
30 |
ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. Simple models for containment of a pandemic[J]. Journal of the Royal Society Interface, 2006, 3 (8): 453- 457.
doi: 10.1098/rsif.2006.0112 |
31 |
ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. A final size relation for epidemic models[J]. Mathematical Biosciences and Engineering, 2007, 4 (2): 159- 175.
doi: 10.3934/mbe.2007.4.159 |
32 |
BRAUER F . The Kermack-McKendrick epidemic model revisited[J]. Mathematical Biosciences, 2005, 198 (2): 119- 131.
doi: 10.1016/j.mbs.2005.07.006 |
33 |
MA J , EARN D J D . Generality of the final size formula for an epidemic of a newly invading infectious disease[J]. Bulletin of Mathematical Biology, 2006, 68 (3): 679- 702.
doi: 10.1007/s11538-005-9047-7 |
34 |
LI Jianquan , LI Yiqun , YANG Yali , et al. Epidemic characteristics of two classic models and the dependence on the initial conditions[J]. Mathematical Biosciences and Engineering, 2016, 13 (5): 999- 1010.
doi: 10.3934/mbe.2016027 |
35 |
LI Jianquan , LOU Yajian . Characteristics of an epidemic outbreak with a large initial infection size[J]. Journal of Biological Dynamics, 2016, 10 (1): 366- 378.
doi: 10.1080/17513758.2016.1205223 |
36 |
CHEN Yan , SONG Haitao , LIU Shengqiang . Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stag[J]. Infectious Disease Modelling, 2022, 7, 795- 810.
doi: 10.1016/j.idm.2022.11.004 |
37 |
DOLBEAULT J , TURINICI G . Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 36.
doi: 10.1051/mmnp/2020025 |
38 |
LIU Shengqiang , WANG Shengkai , WANG Lin . Global dynamics of delay epidemic models with nonlinear incidence rate and relapse[J]. Nonlinear Analysis(Real World Applications), 2011, 12, 119- 127.
doi: 10.1016/j.nonrwa.2010.06.001 |
39 |
RUAN Shigui , WANG Wendi . Dynamical behavior of an epidemic model with nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188 (1): 135- 163.
doi: 10.1016/S0022-0396(02)00089-X |
40 |
HETHCOTE H W , DRIESSCHE P . Some epidemiological models with nonlinear incidence[J]. Journal of Mathematical Biology, 1991, 29 (3): 271- 287.
doi: 10.1007/BF00160539 |
41 | ANDERSON R M , MAY R M . Population biology of infectious diseases Ⅰ[J]. Nature, 1979, 180, 361- 367. |
42 | ANDERSON R M , MAY R M . Infectious diseases of humans, dynamics and control[M]. Oxford: Oxford University Press, 1992. |
43 |
COOKE K L , VAN DEN DRIESSCHE P . Analysis of an SEIRS epidemic model with two delays[J]. Journal of Mathematical Biology, 1996, 35 (2): 240- 260.
doi: 10.1007/s002850050051 |
44 |
WANG Wendi . Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15 (4): 423- 428.
doi: 10.1016/S0893-9659(01)00153-7 |
45 | HUI J , CHEN L . Impulsive vaccination of SIR epidemic models with nonlinear incidence rates[J]. Discrete and Continuous Dynamical Systems(Series B), 2004, 3 (4): 595- 605. |
46 |
MAY R M , ANDERSON R M . Regulation and stability of host-parasite population interactions Ⅱ: destabilizing process[J]. Journal of Animal Ecology, 1978, 47, 219- 267.
doi: 10.2307/3933 |
47 | DIEKMANN O , HEESTERBEEK J A P , METZ J A J . On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28, 365- 382. |
48 |
BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5, 195- 221.
doi: 10.30707/LiB5.1Blackwood |
49 |
VAN DEN DRIESSCHE P , WATMOUGH J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180, 29- 48.
doi: 10.1016/S0025-5564(02)00108-6 |
50 | DIEKMANN O , HEESTERBEEK J A P , ROBERTS M G . The construction of next-generation matrices for compartmental epidemic models[J]. Journal of the Royal Society Interface, 2009, 7 (47): 873- 885. |
51 |
FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675 |
52 |
BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5 (1): 195- 221.
doi: 10.30707/LiB5.1Blackwood |
53 |
BACAER N . Un modèle mathématique des débuts de l'épidémie de coronavirus en France[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 29- 30.
doi: 10.1051/mmnp/2020015 |
[1] | WANG Yan-mei, LIU Gui-rong. Asymptotic behavior of a stochastic SIQS model with Markov switching [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 84-93. |
[2] | JIAO Zhan, JIN Zhen. Dynamics of a spatially heterogeneous SI epidemic model with nonlocal diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 70-77. |
[3] | CHEN Lu, ZHANG Xiao-guang. Research of an epidemic model on adaptive networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 76-82. |
[4] | ZHANG Dao-xiang, HU Wei, TAO Long, ZHOU Wen. Dynamics of a stochastic SIS epidemic model with different incidences and double epidemic hypothesis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 10-17. |
[5] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[6] | WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87. |
[7] | SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59. |
[8] | LIN Qing-teng, WEI Feng-ying. The stability of stochastic SIQS epidemic model with saturated incidences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 128-134. |
[9] | WU Jing-yuan, SHI Rui-qing. Analysis of an SEQIHRS epidemic model with media coverage [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 115-122. |
[10] | ZHOU Yan-li1,2, ZHANG Wei-guo1. Persistence and extinction in stochastic SIS epidemic model with nonlinear incidence rate [J]. J4, 2013, 48(10): 68-77. |
[11] | JI Wen-peng, ZHANG Tian-si*, XU Li-xiao. Asymptotic behavior of global positive solution to a stochastic SIS epidemic model with virus auto variation [J]. J4, 2013, 48(05): 105-110. |
|