JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (1): 63-73.doi: 10.6040/j.issn.1671-9352.4.2023.0213
LIU Qing1, LI Wei1*, YU Shaoyong2, SONG Yuping3, ZHOU Qidi1, ZOU Weilin1
CLC Number:
[1] MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017:5632-5640. [2] QIN Zengyi, WANG Jinglu, LU Yan. Monogrnet: a geometric reasoning network for monocular 3D object localization[C] //2019 33th AAAI Conference on Artificial Intelligence(AAAI-19). Hawaii: AAAI Press, 2019:8851-8858. [3] SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3D object detection: from single to multi-class recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(3):1219-1231. [4] BRAZIL G, LIU X M. M3D-RPN: monocular 3D region proposal network for object detection[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019:9286-9295. [5] XIANG Y, CHOI W, LIN Y Q, et al. Data-driven 3D voxel patterns for object category recognition[C] //2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston: IEEE, 2015:1903-1911. [6] LIU Zongdai, ZHOU Dingfu, LU Feixiang, et al. Autoshape: real-time shape-aware monocular 3D object detection[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021:15621-15630. [7] SONG Xibin, LI Wei, ZHOU Dingfu, et al. MLDA-Net: multi-level dual attention-based network for self-supervised monocular depth estimation[J]. IEEE Transactions on Image Processing, 2021, 30:4691-4705. [8] GODARD C, AODHA O M, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019:3827-3837. [9] WANG Qi, CHEN Jian, DENG Jiangqiang, et al. 3D-CenterNet: 3D object detection network for point clouds with center estimation priority[J]. Pattern Recognition, 2021, 115:107884. [10] CHEN Yongjian, TAI Lei, SUN Kai, et al. Monopair: monocular 3D object detection using pairwise spatial relationships[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE Computer Society, 2020:12090-12099. [11] YIN T W, ZHOU X Y, KRAHENBUHL P. Center-based 3D object detection and tracking[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021:11779-11788. [12] FU Huan, GONG Mingming, WANG Chaohui, et al. Deep ordinal regression network for monocular depth estimation[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018:2002-2011. [13] MAYER N, ILG E, HAUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE Computer Society, 2016:4040-4048. [14] WANG Y, CHAO W L, GARG D, et al. Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019:8437-8445. [15] PARK D, AMBRUS R, GUIZILINI V, et al. Is pseudo-lidar needed for monocular 3D object detection?[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021:3142-3152. [16] MA Xinzhu, WANG Zhihui, LI Haojie, et al. Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019:6850-6859. [17] GARG D, WANG Y, HARIHARAN B, et al. Wasserstein distances for stereo disparity estimation[J]. Advances in Neural Information Processing Systems, 2020, 33:22517-22529. [18] ZHANG Hu, ZU Keke, LU Jian, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[C] //Asian Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022:541-557. [19] WU Bichen, WAN Alvin, YUE Xiangyu, et al. Shift: a zero flop, zero parameter alternative to spatial convolutions[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018:9127-9135. [20] SHEPLEY A J, FALZON G, KWAN P, et al. Confluence: a robust non-IoU alternative to non-maxima suppression in object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10):11561-11574. [21] HE Kaiminh, ZHANG Xiangyu, REN Shaoqi, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE Computer Society, 2016:770-778. [22] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [23] BRABANDERE D B, JIA X, TUYTELAARS T, et al. Dynamic filter networks[J]. Proceedings NIPS 2016, 2016, 29:1-9. [24] WANG Xin, LV Rongrong, ZHAO Yang, et al. Multi-scale context aggregation network with attention-guided for crowd counting[C] //2020 15th IEEE International Conference on Signal Processing(ICSP). Beijing: IEEE, 2020:240-245. [25] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C] //2016 14th European Conference on Computer Vision(ECCV). Amsterdam: Springer, 2016:21-37. [26] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C] //2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence: IEEE, 2012:3354-3361. [27] LI Peixuan, ZHAO Huaici, LIU Pengfei, et al. Rtm3D: real-time monocular 3D detection from object keypoints for autonomous driving[C] //2020 16th European Conference on Computer Vision(ECCV). Beilin: Springer, 2020:644-660. [28] CHEN X Z, KUNDU K, ZHU Y K, et al. 3D object proposals using stereo imagery for accurate object class detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 40(5):1259-1272. [29] QIN Zengyi, WANG Jinglu, LU Yan. Triangulation learning network: from monocular to stereo 3D object detection[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019:7607-7615. [30] XU Bin, CHEN Zhenzhou. Multi-level fusion based 3D object detection from monocular images[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018:2345-2353. [31] SHI X P, CHEN Z X, KIM T K. Distance-normalized unified representation for monocular 3D object detection[C] //2020 16th European Conference on Computer Vision(ECCV). Berlin: Springer, 2020:91-107. [32] CAI Yingjie, LI Buyu, JIAO Zeyu, et al. Monocular 3D object detection with decoupled structured polygon estimation and height-guided depth estimation[C] //2020 34th AAAI Conference on Artificial Intelligence(AAAI-20). New York: AAAI Press, 2020:10478-10485. [33] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C] //2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Miami: IEEE, 2009:248-255. [34] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C] //2017 IEEE International Conference on Computer Vision(ICCV). Venice: IEEE Computer Society, 2017:764-773. |
[1] | Xia LIANG,Jie GUO. A method of online teaching platform selection based on online reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(9): 108-118. |
[2] | Chao LI,Wei LIAO. Chinese disease text classification model driven by medical knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 122-130. |
[3] | Jie JI,Chengjie SUN,Lili SHAN,Boyue SHANG,Lei LIN. A prompt learning approach for telecom network fraud case classification [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 113-121. |
[4] | Qi LUO,Gang GOU. Multimodal conversation emotion recognition based on clustering and group normalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 105-112. |
[5] | Fengxu ZHAO,Jian WANG,Yuan LIN,Hongfei LIN. Probability distribution optimization model for learning to rank [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 95-104. |
[6] | Xingyu HUANG,Mingyu ZHAO,Ziyu LYU. Category-wise knowledge probers for representation learning of graph neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 85-94. |
[7] | Liang GUI,Yao XU,Shizhu HE,Yuanzhe ZHANG,Kang LIU,Jun ZHAO. Factual error detection in knowledge graphs based on dynamic neighbor selection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 76-84. |
[8] | Ning XIAN,Yixing FAN,Tao LIAN,Jiafeng GUO. Noise network alignment method integrating multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 64-75. |
[9] | Chengjie SUN,Zongwei LI,Lili SHAN,Lei LIN. A document-level event extraction method based on core arguments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 53-63. |
[10] | Peiyu LIU,Bowen YAO,Zefeng GAO,Wayne Xin ZHAO. Matrix product operator based sequential recommendation model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 44-52, 104. |
[11] | Wei SHAO,Gaoyu ZHU,Lei YU,Jiafeng GUO. Dimensionality reduction and retrieval algorithms for high dimensional data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 27-43. |
[12] | Jiyuan YANG,Muyang MA,Pengjie REN,Zhumin CHEN,Zhaochun REN,Xin XIN,Fei CAI,Jun MA. Research on self-supervised pre-training for recommender systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 1-26. |
[13] | Haisu CHEN,Jiachun LIAO,Sicheng YAO. Identification and statistical analysis methods of personal information disclosure in open government data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 95-106. |
[14] | Xin WEN,Deyu LI. The ML-KNN method based on attribute weighting [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 107-117. |
[15] | Xueqiang ZENG,Yu SUN,Ye LIU,Zhongying WAN,Jiali ZUO,Mingwen WANG. Emoji embedded representation based on emotion distribution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 81-94. |
|