JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 52-58.doi: 10.6040/j.issn.1671-9352.0.2014.457

Previous Articles     Next Articles

Ore extensions of G-cograded multiplier Hopf algebras

LU Dao-wei, ZHANG Xiao-hui   

  1. Department of Mathematics, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2014-10-20 Revised:2015-05-27 Online:2015-10-20 Published:2015-10-21

Abstract: The Ore extensions of G-cograded multiplier Hopf algebras are constructed, and some sufficient and necessary conditons for the Ore extensons to be G-cograded multiplier Hopf algebras are given. As an application, an example will be given at the end.

Key words: Hopf algebra, group-cograded multiplier Hopf algebra, Ore extensions

CLC Number: 

  • O153.5
[1] NENCIU A. Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions[J]. Comm Algebra, 2001, 29(8):3419-3432.
[2] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions[J]. J Algebra, 2000, 225(2): 743-770.
[3] PANOV A N. Ore extensions of Hopf algebras[J]. Mathematical Notes, 2003, 74(3): 401-410.
[4] WANG Dingguo, LU Daowei, The Hopf group coalgebra Ore extensions[J]. J Korean Math Soc, 2014, 51(2):325-344.
[5] VAN Daele A. Multiplier Hopf algebra[J]. Trans Am Math Soc, 1994, 342(2):917-932.
[6] ABD EL-HAFEZ A T, DELVAUX L, VAN Daele A. Group-cograded multiplier Hopf (*-)algebra[J]. Algebr Represent Theory, 2007, 10(1):77-95.
[7] ZHAO Lihui, LU Diming, Ore Extension of multiplier Hopf algebras[J]. Comm Algebra, 2012, 40(1):248-272.
[1] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[2] WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13.
[3] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[4] YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43.
[5] GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23.
[6] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
[7] YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80.
[8] ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29.
[9] WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45.
[10] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22.
[11] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
[12] CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71.
[13] . Irreducible representations of D(kS3) and ring structure of its Grothendieck group [J]. J4, 2009, 44(12): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!