JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 52-58.doi: 10.6040/j.issn.1671-9352.0.2014.457
Previous Articles Next Articles
LU Dao-wei, ZHANG Xiao-hui
CLC Number:
[1] NENCIU A. Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions[J]. Comm Algebra, 2001, 29(8):3419-3432. [2] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions[J]. J Algebra, 2000, 225(2): 743-770. [3] PANOV A N. Ore extensions of Hopf algebras[J]. Mathematical Notes, 2003, 74(3): 401-410. [4] WANG Dingguo, LU Daowei, The Hopf group coalgebra Ore extensions[J]. J Korean Math Soc, 2014, 51(2):325-344. [5] VAN Daele A. Multiplier Hopf algebra[J]. Trans Am Math Soc, 1994, 342(2):917-932. [6] ABD EL-HAFEZ A T, DELVAUX L, VAN Daele A. Group-cograded multiplier Hopf (*-)algebra[J]. Algebr Represent Theory, 2007, 10(1):77-95. [7] ZHAO Lihui, LU Diming, Ore Extension of multiplier Hopf algebras[J]. Comm Algebra, 2012, 40(1):248-272. |
[1] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[2] | WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13. |
[3] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[4] | YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43. |
[5] | GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23. |
[6] | JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101. |
[7] | YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80. |
[8] | ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29. |
[9] | WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45. |
[10] | DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22. |
[11] |
CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3.
The Structure Theorem of weak comodule algebras in Yetter-Drinfeld module categories [J]. J4, 2013, 48(12): 14-17. |
[12] | CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71. |
[13] | . Irreducible representations of D(kS3) and ring structure of its Grothendieck group [J]. J4, 2009, 44(12): 17-21. |
|