JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (10): 97-103.doi: 10.6040/j.issn.1671-9352.0.2016.405

Previous Articles     Next Articles

Topological effect algebras

ZHANG Qiao-wei1, GUO Zhi-hua2, CAO Huai-xin2   

  1. 1. Department of Mathematics and Statistics, Yulin University, Yulin 719000, Shaanxi, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2016-09-02 Online:2017-10-20 Published:2017-10-12

Abstract: Topological structure is introduced on some classic effect algebras, and so the effect algebras become topological effect algebras. We prove that the direct sum of two topological effect algebras is still topological effect algebra, and the fuzzy system of topological effect algebra is still topological effect algebra. Continious map between topological effect algebras are given, and the continuity of morphisms, monomorphisms and isomorphic are discussed. Finally, it is proved that the set of all continious maps from a topological effect algebra to another is also a topological effect algebra.

Key words: topological effect algebras, morphism, continuous map

CLC Number: 

  • O177.1
[1] FOULIS D J, BENNETT M K. Effect algebra and unsharp quantum logics[J]. International Journal of Theoretical Physics, 1994, 24(10):1325-1346.
[2] GUDDER S, GREECHIE R. Sequential products on effect algebras[J]. Reports on Mathematical Physics, 2002, 49(1):87-111.
[3] GUDDER S, GREECHIE R. Uniqueness and order in sequential effect algebras[J]. International Journal of Theoretical Physics, 2005, 44(7):755-770.
[4] GUDDER S, LATRMOLIRE F. Characterization of the sequential product on quantum effects[J]. Journal of Mathematical Physics, 2008, 49:1-7.
[5] 张巧卫. 对偶序列效应代数的研究[J]. 河南科学,2016,34(4):463-466. ZHANG Qiaowei. Research on dual sequential effect algebras[J]. Henan Science, 2016, 34(4):463-466.
[6] 陆玲, 曹怀信, 陈峥立, 等. 效应代数上态射的注记[J]. 数学学报, 2009, 52(5):957-960. LU Ling, CAO Huaixin, CHEN Zhengli, et al. A note on morphisms on effect algebras[J]. Acta Mathematica Sinica, 2009, 52(5):957-960.
[7] 张坤利,曹怀信,郭志华.效应代数上态的存在性[J].数学学报, 2013,56(3):301-310. ZHANG Kunli, CAO Huaixin, GUO Zhihua. Existence of states of effect algebras[J]. Acta Mathematica Sinica, 2013, 56(3):301-310.
[8] 张巧卫,曹怀信,陆玲. 效应代数的表示及弱表示[J]. 西北大学学报(自然科学版),2012,42(2):198-202. ZHANG Qiaowei, CAO Huaixin, LU Ling. Representation and weak representation of effect algebras[J]. Journal of Northwest University(Natural Science Edition), 2012, 42(2):198-202.
[9] 曹怀信,郭志华,陈峥立,等.效应代数的表示[J]. 中国科学(数学),2011,41(3):279-286. CAO Huaixin, CHEN Zhengli, GUO Zhihua, et al. Representations of effect algebras[J]. Scientia Sinica(Math), 2011, 41(2):279-286.
[10] 曹怀信,郭志华,陈峥立,等.效应代数的表示理论[J]. 中国科学(数学), 2013,43(8):835-846. CAO Huaixin, GUO Zhihua, CHEN Zhengli, et al. Representation theory of effect algebras[J]. Scientia Sinica(Math), 2013, 43(8):835-846.
[11] MA Zhihao, ZHU Sen. Topologies on quantum effects[J]. Reports on Mathematical Physics, 2008, 64(3):429-439.
[12] QU Wenbo, WU Junde. Continuity of effect algebra operations in the interval topology[J]. International Journal of Theoretical Physics, 2004, 43(11):2311-2317.
[13] LEI Qiang, WU Junde, LI Ronglu. Order topology and frink ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2010, 49(12):3166-3175.
[14] MA Zhihao, WU Junde, LU Shijie. Ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2004, 43:223-234.
[15] WU Junde, TANG Zhifeng, CHO Minhyung. Two variables operation continuity of effect algebras[J]. International Journal of Theoretical Physics, 2005, 44(5):581-586.
[16] MA Zhihao, WU Junde, LU Shijie. Ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2004, 43:2319-2323.
[17] ZHU Sen, MA Zhihao. Interval topology on effect algebras[J]. Applied Mathematics Letters, 2012, 25:631-635.
[18] 雷强. 量子逻辑的内蕴拓扑[D].哈尔滨:哈尔滨工业大学, 2008. LEI Qiang. The intrinsic topology of quantum logics[D]. Harbin: Harbin Institute of Technology, 2008.
[19] LEI Qiang, SU Xiaochao, WU Junde. Continuity of the sequential product of sequential quantum effect algebras[J]. Journal of Mathematical Physics, 2016, 57(4):1331-1352.
[1] . The number of homomorphisms from metacyclic groups to metacyclic groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 17-22.
[2] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
[3] . On Coleman automorphisms of finite inner nilpotent groups and Frobenius groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 4-6.
[4] LIU Ni, ZHANG Miao-miao. Continuous directed-complete ordered semigroups and their categorical properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 57-64.
[5] HAI Jin-ke, WANG Wei, HE Wei-ping. A note on Coleman automorphisms of finite groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 35-38.
[6] PENG Jia-yin. [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 119-126.
[7] YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118.
[8] LIANG Shao-hui. The category of E-quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 47-53.
[9] HUANG Shu-liang. Several results on derivations of formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 43-46.
[10] GAO Rui-mei, SUN Yan. Quadratic Gröbner basis and the isomorphism of Orlik-Solomon algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 89-94.
[11] ZHANG Wan-ru, GUO Jin-sheng. A class of quasi-Armendariz subrings of matrix rings over reduced rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 67-70.
[12] LIU Wei-feng, DU Ying-xue, XU Hong-wei. Interval soft Boolean algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 104-110.
[13] MA Jing, GUO Ying, SUN Cheng-xia. An example of semicommutative Armendariz ring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 1-6.
[14] GUO Ji-dong1, HAI Jin-ke2*. A note on class-preserving automorphisms#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 46-49.
[15] HAO Cui-xia, YAO Bing-xue*. θ-fuzzy homomorphism of groups#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!