JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (2): 84-88.doi: 10.6040/j.issn.1671-9352.0.2018.155

Previous Articles    

Infinitely many nontrival solutions for a class of Schrödinger equations

WU Yi-jia, CHENG Rong*   

  1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Published:2019-02-25

Abstract: This paper considers the existence of infinitely many nontrival solutions for a class of Schrödinger equation with sign-changing potentials. Under the condition that the nonlinearity has superquadratic growth, the existent result is established, which generalizes the existing results.

Key words: variational method, Schrö, dinger equation, critical point

CLC Number: 

  • O175.14
[1] LI Yi. Remarks on a semilinear elliptic equation on RN[J]. Journal of Differential Equations, 1988, 74(1):34-49.
[2] RABINOWITZ P H. On a class of nonlinear Schrödinger equations[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1992, 43(2):270-291.
[3] LIU Xiangqing,HUANG Yisheng. Sign-changing solutions for a class of nonlinear Schrödinger equations[J]. Bulletin of the Australian Mathematical Society, 2009, 80(2):294-305.
[4] CAO Daomin, LI Shuanglong, LUO Peng. Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations[J]. Calculus of Variations and Partial Differential Equations, 2015, 54(4):4037-4063.
[5] JUÁREZ HURTADO E, MIYAGAKI O H, RODRIGUES R S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions[J]. Journal of Dynamics and Differential Equations, 2018, 30(2):405-432.
[6] CHEN Huyuan, FELMER P, QUAAS A. Large solution to elliptic equations involving fractional Laplacian[J]. Annales De Linstitut Henri Poincaré, 2015, 32(6):1199-1228.
[7] CHEN Huyuan, VÉRON L. Semilinear fractional elliptic equations involving measures[J]. Journal of Differential Equations, 2014, 257(5):1457-1486.
[8] BARTSCH T, JEANJEAN L, SOAVE N. Normalized solutions for a system of coupled cubic Schrödinger equations on R3[J]. Journal De Mathematiques Pures Et Appliquees, 2016, 106(4):583-614.
[9] BARTSCH T, SOAVE N. A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[J]. Journal of Functional Analysis, 2017, 272(12):4998-5037.
[10] TANG Xianhua. Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2013, 401(1):407-415.
[11] ZHANG Qingye, XU Bin. Multipicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential[J]. Journal of Mathematical Analysis and Applications, 2001, 377(2):834-840.
[12] ZOU Wenming. Variant fountain theorems and their applications[J]. Manuscripta Mathematica, 2001, 104(3):343-358.
[13] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[J]. Conference Board of the Mathematical Sciences, 1986, 65:1-100.
[1] ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37.
[2] HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71.
[3] JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103.
[4] ZHANG Shen-gui. Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 48-53.
[5] SUN Guo-wei, MAI A-li. Multiple homoclinic solutions for second order nonlinear difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 51-54.
[6] CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62.
[7] WANG Ping-li, SHI Dong-yang. Superconvergence analysis and extrapolation of bilinear finite element for Schrödinger equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 66-71.
[8] ZHANG Shen-gui. Multiplicity of solutions for local superlinear p-kirchhoff-type equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 61-68.
[9] ZHANG Guo-wei 1, CHEN Ang2. Infinitely connectivity of the wandering domain of#br# Baker’s original example [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 70-73.
[10] MA Jie, PAN Zhen-kuan*, WEI Wei-bo, GUO Kai. The fast split bregman algorithm for variational image inpainting model with euler’s elastic [J]. J4, 2013, 48(05): 70-77.
[11] ZHANG Shen-gui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation [J]. J4, 2012, 47(10): 116-120.
[12] ZHANG Shen-gui. Multiplicity of periodic solution of a class of non-automous second order system [J]. J4, 2011, 46(11): 64-69.
[13] LU Yao1, LI De-sheng2, YANG Yang1. The Fourier spectral approximation for nonlinear SchrÖdinger equation [J]. J4, 2011, 46(1): 119-126.
[14] ZHU Hai-xia1, YAN Shi-lei2. Phase diagrams of random crystal field Blume-Cape model [J]. J4, 2011, 46(1): 51-55.
[15] . Study on conditions for the existence of bound states in central field with variational method [J]. J4, 2009, 44(5): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!