JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 33-42.doi: 10.6040/j.issn.1671-9352.0.2019.407

Previous Articles    

Some properties of Drazin order

PANG Yong-feng, WEI Yin, WANG Quan   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2020-02-14

Abstract: Let B(H) be the set of all bounded linear operators on Hilbert space H. Firstly, some characterizations and related properties of Drazin order in H=R(Ak)⊕N(Ak) space are studied. Secondly, the Drazin inverse of idempotent is generalized in the general algebra, and then some properties of Drazin order are studied.

Key words: Drazin inverse, Drazin order, idempotent

CLC Number: 

  • O177.1
[1] 刘晓冀, 王志坚. 矩阵的Drazin逆及D序[J]. 西安电子科技大学学报(自然科学版), 2001, 28(6):789-791. LIU Xiaoji, WANG Zhijian. Drazin inverse and D order of matrix[J]. Journal of Xidian University(Natural Science Edition), 2001, 28(6):789-791.
[2] 周敏娜. 关于矩阵Γα-Drazin逆和Γα-Drazin序[J]. 科技通报, 2009, 25(2):136-140. ZHOU Minna. Γα-Drazin inverse and Γα-Drazin order on the matrix[J]. Bulletin of Science and Technology, 2009, 25(2):136-140.
[3] 钟金, 刘晓冀. Hilbert空间上算子的Sharp序[J]. 山东大学学报(理学版), 2010, 45(4):82-85. ZHONG Jin, LIU Xiaoji. Sharp order of operator on Hilbert space[J]. Journal of Shandong University(Natural Science), 2010, 45(4):82-85.
[4] 朱辉辉. 环上元素的Moore-Penrose逆及Drazin逆[D]. 南京: 东南大学, 2016. ZHU Huihui. Moore-Penrose inverse and Drazin inverse of elements on the ring[D]. Nanjing: Southeast University, 2016.
[5] 杨小英, 刘新, 王亚强. 两个矩阵和的Drazin逆[J]. 山东科学, 2016, 29(2):88-91. YANG Xiaoying, LIU Xin, WANG Yaqiang. Drazin inverse of two matrix sums[J]. Shandong Science, 2016, 29(2):88-91.
[6] QIN Yonghui, LIU Xiaoji. Some results on the symmetric representation of the generalized Drazin inverse in a Banach algebra[J]. Symmetry, 2019, 11(1):105-113.
[7] WANG Hua, CAI Wu, HUANG Junjie. Drazin inverse of anti-triangular operator matrices[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(3):1071-1083.
[8] 杜娟, 王华. 两个有界线性算子和的Drazin逆[J]. 数学杂志, 2018, 38(3):511-519. DU Juan, WANG Hua. Drazin inverse of two bounded linear operator sums[J]. Journal of Mathematics, 2018, 38(3):511-519.
[9] BENABDI E H, BARRAA M. The Drazin and generalized Drazin invertibility of linear combinations of idempotents[J]. Journal of Mathematical Analysis and Applications, 2019, 478(2):1163-1171.
[10] 曹秋红, 谢涛, 左可正. 两个幂等矩阵组合的Drazin逆[J]. 数学的实践与认识, 2018, 48(9):302-307. CAO Qiuhong, XIE Tao, ZUO Kezheng. Drazin inverse of two idempotent matrices[J]. Journal of Mathematics in Practice and Theory, 2018, 48(9):302-307.
[11] 刘晓冀. 算子广义逆的理论及计算[M]. 北京: 科学出版社, 2007:1-6. LIU Xiaoji. The theory and calculation of operator generalized inverse[M]. Beijing: Science Press, 2007: 1-6.
[12] 邓春源, 杜鸿科. Hilbert空间上线性算子的Drazin可逆性[J]. 数学学报, 2007, 50(6):1263-1270. DENG Chunyuan, DU Hongke. Drazin invertibility of linear operators on Hilbert spaces[J]. Acta Mathematica Sinica, 2007, 50(6):1263-1270.
[13] MOSIC D, DJORDJEVIC D S. Weighted pre-orders involving the generalized Drazin inverse[J]. Applied Mathematics and Computation, 2015, 270(1):496-504.
[14] 张世芳, 钟怀杰. 关于正算子的n次方根[J]. 数学研究, 2008, 41(1):51-55. ZHANG Shifang, ZHONG Huaijie. About the n-th root of the positive operator[J]. Journal of Mathematical Study, 2008, 41(1):51-55.
[15] 庞永锋, 杨威. 应用泛函分析基础[M]. 西安: 西安电子科技大学出版社, 2015: 147-151. PANG Yongfeng, YANG Wei. Fundamentals of applied functional analysis[M]. Xian: Xidian University Press, 2015: 147-151.
[16] 王龙.(b, c)-逆及相关广义逆的研究[D]. 南京: 东南大学, 2015. WANG Long.(b, c)-inverse and related generalized inverse research[D]. Nanjing: Southeast University, 2015.
[17] DRAZIN M P. Pseudo-inverses in associative rings and semigroups[J]. American Mathematical Monthly, 1958, 65(7):506-514.
[1] GAO Shi-juan, ZHANG Jian-hua. Characterization of (α, β)-derivation on rings with idempotents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 1-5.
[2] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[3] SUN Xiao-qing, WANG Xin. Pseudo Drazin inverse of 2×2 anti-triangular matrix in Banach algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 58-66.
[4] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[5] LIU Cai-ran, SONG Xian-mei. Quadratic residue codes over Fl+vFl+v2Fl [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 45-49.
[6] LIN Ping-feng, ZENG Wei, ZENG Chun-yi. Idempotents of semigroup PΓ(Λ×Λ) of binary relations determined by the semilattice Γ on the set Λ [J]. J4, 2013, 48(8): 36-40.
[7] XIE Tao, ZUO Ke-zheng. [J]. J4, 2013, 48(4): 95-103.
[8] LUO Yong-gui, XU Bo, YOU Tai-jie. On the rank and idempotent rank of each star ideal of the semigroup PHn [J]. J4, 2013, 48(2): 42-48.
[9] LUO Yong-gui. Non-group rank and relative rank of the semigroup W(n,r) [J]. J4, 2013, 48(12): 70-74.
[10] ZHANG Miao1, LIU Xiao-ji1,2*. The representations of the Drazin inverse of differences of two elemen ts in Banach algebra [J]. J4, 2012, 47(4): 89-93.
[11] ZHAO Ping. On the idempotent ranks of the semigroup V(n,r) [J]. J4, 2012, 47(2): 78-81.
[12] FAN Da-fu1,2, LI Chun-hong2. Some expressions of the generalized Drazin inverse of  the 2×2 block operators in Banach space [J]. J4, 2012, 47(12): 88-95.
[13] ZHAO Ping1, YOU Tai-jie2, XU Bo2, HU Hua-bi1. Idempotent rank in decreasing and order-preserving finite partial transformation semigroups [J]. J4, 2011, 46(4): 75-77.
[14] FANG Li1, BAI Wei-zu2. Maps preserving the idempotency of products or triple Jordan products of idempotent operators [J]. J4, 2010, 45(12): 98-105.
[15] HU Chun-mei,LIU Xiao-ji*. A splitting for the W-weighted Drazin inverse of a linear operator on Banach space [J]. J4, 2010, 45(10): 24-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!