JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 35-41.doi: 10.6040/j.issn.1671-9352.0.2020.457
YANG Li-juan
CLC Number:
[1] LI Yongxiang. Positive solutions of fourth-order boundary value prolems with two parameters[J]. Journal of Mathmatical Analysis and Applications, 2003, 281(2):477-484. [2] MA Ruyun, WANG Jinxiang, LONG Yan. Lower and upper solution method for the problem of elastic beam with hinged ends[J]. Journal of Fixed Point Theory and Applications, 2018, 20(1):1-13. [3] MA R Y, WANG H Y, ELSANOSI M. Spectrum of a linear fourth-order differential operator and its applications[J]. Mathematische Nachrichten, 2013, 286(17/18):1805-1819. [4] DANG Q, DANG Q L, QUY N T K. A novel efficient method for nonlinear boundary value problems[J]. Numerical Algorithms, 2017, 76(2):427-439. [5] BAI Zhanbing. The method of lower and upper solutions for a bending of an elastic equation[J]. Journal of Mathmatical Analysis and Applications, 2000, 248(1):195-202. [6] CABADA A, CID J A, SANCHEZ L. Positivity and lower and upper solutions for fourth order boundary vlaue problems[J]. Nonlinear Analysis, 2007, 67(5):1599-1612. [7] YAN Dongliang, MA Ruyun, SU Xiaoxiao. Global structure of one-sign solutions for a simply supported beam equation[J]. Journal of Inequalities and Applications, 2020, 112:1-11. [8] MA Ruyun. Existence of positive solutions of a fourth-order boundary value problem[J]. Applied Mathematics and Computation, 2005, 168(2):1219-1231. [9] 徐登洲, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008. XU Dengzhou, MA Ruyun. Nonlinear perturbation of linear differential equations[M]. Beijing: Science Press, 2008. [10] 王高雄, 周之铭, 朱思铭, 等. 常微分方程[M]. 北京: 高等教育出版社, 2006. WANG Gaoxiong, ZHOU Zhiming, ZHU Siming, et al. Ordinary differential equation[M]. Beijing: Higher Education Press, 2006. [11] AMANN H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Review, 1976, 18(4):620-709. |
|