JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (2): 98-110.doi: 10.6040/j.issn.1671-9352.0.2020.343

Previous Articles    

Stability and extended well-posedness of the solution sets for set optimization problems

MENG Xu-dong   

  1. Science and Technology College of Nanchang Hangkong University, Gongqingcheng 332020, Jiangxi, China
  • Published:2022-01-07

Abstract: The stability and extended well-posedness of the approximate solution sets for set optimization problems are studied. The Painlevé-Kuratowski upper convergence and lower convergence of the approximate solution sets for set optimization problems are discussed by assuming the continuity and generalized cone quasi-convexity of objective function. The extended well-posedness and weak extended well-posedness for set optimization problems are analyzed under some appropriate assumptions.

Key words: set optimization problem, Painlevé-Kuratowski convergence, stability, extended well-posedness

CLC Number: 

  • O221.3
[1] HUANG Xuexiang. Stability in vector-valued and set-valued optimization[J]. Mathematical Methods of Operations Research, 2000, 52(2):185-193.
[2] LUCCHETTI R E, MIGLIERINA E. Stability for convex vector optimization problems[J]. Optimization, 2004, 53(5/6):517-528.
[3] CRESPI G P, PAPALIA M, ROCCA M. Extended well-posedness of quasiconvex vector optimization problems[J]. Journal of Optimization Theory and Applications, 2009, 141(2):285-297.
[4] LALITHA C S, CHATTERJEE P. Stability for properly quasiconvex vector optimization problem[J].Journal of Optimization Theory and Applications, 2012, 155(2):492-506.
[5] LALITHA C S, CHATTERJEE P. Stability and scalarization of weak efficient, efficient and henig proper efficient sets using generalized quasiconvexities[J]. Journal of Optimization Theory and Applications, 2012, 155(3):941-961.
[6] FANG Z M, LI S J. Painlevé-Kuratowski convergences of the solution sets to perturbed generalized systems[J]. Acta Mathematicae Applicatae Sinica, 2012, 28(2):361-370
[7] PENG Zaiyun, YANG Xinmin. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity[J]. Acta Mathematicae Applicatae Sinica, 2014, 30(4):845-858.
[8] ZHAO Yong, PENG Zaiyun, YANG Xinmin. Semicontinuity and convergence for vector optimization problems with approximate equilibrium constraints[J]. Optimization, 2016, 65(7):1397-1415.
[9] ANH L Q, BANTAOJAI T, HUNG N, et al. Painlevé-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems[J]. Computational and Applied Mathematics, 2018, 37(3):3832-3845.
[10] KHAN A A, TAMMER C, ZALINESCU C. Set-valued optimization[M]. Berlin: Springer Heidelberg, 2015.
[11] GUTIÉRREZ C, MIGLIERINA E, MOLHO E, et al. Convergence of solutions of a set optimization problem in the image space[J]. Journal of Optimization Theory and Applications, 2016, 170(2):358-371.
[12] XU Dongyang, LI Shengjie. Continuity of the solution set mappings to a parametric set optimization problem[J]. Optimization Letters, 2014, 8(8):2315-2327.
[13] HAN Y, HUANG N J. Well-posedness and stability of solutions for set optimization problems[J]. Optimization, 2017, 66(1):17-33.
[14] HAN Y, HUANG N J. Continuity and convexity of a nonlinear scalarizing function in set optimization problems with applications[J]. Journal of Optimization Theory and Applications, 2018, 177(3):679-695.
[15] HERNÁNDEZ E, RODRÍGUEZ-MARÍN L. Nonconvex scalarization in set optimization with set-valued maps[J]. Journal of Mathematical Analysis and Applications, 2007, 325(1):1-18.
[16] KHOSHKHABAR-AMIRANLOO S. Stability of minimal solutions to parametric set optimization problems[J]. Applicable Analysis, 2018, 97(14):2510-2522.
[17] KARUNA, LALITHA C S. External and internal stability in set optimization[J]. Optimization, 2019, 68(4):833-852.
[18] ZHANG W Y, LI S J, TEO K L. Well-posedness for set optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(9):3769-3778.
[19] GUTIÉRREZ C, MIGLIERINA E, MOLHO E, et al. Pointwise well-posedness in set optimization with cone proper sets[J]. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(4):1822-1833.
[20] LONG Xianjun, PENG Jiawen, PENG Zaiyun. Scalarization and pointwise well-posedness for set optimization problems[J]. Journal of Global Optimization, 2015, 62(4):763-773.
[21] CRESPI G, KUROIWA D, ROCCA M. Convexity and global well-posedness in set-optimization[J/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.646.2210&rep=rep1&type=pdf.
[22] CRESPI G P, DHINGRA M, LALITHA C S. Pointwise and global well-posedness in set optimization: a direct approach[J]. Annals of Operations Research, 2018, 269(1/2):149-166.
[23] ZOLEZZI T. Extended well-posedness of optimization problems[J]. Journal of Optimization Theory and Applications, 1996, 91(1):257-266.
[24] HUANG X X. Extended well-posedness properties of vector optimization problems[J]. Journal of Optimization Theory and Applications, 2000, 106(1):165-182.
[25] HUANG X X. Extended and strongly extended well-posedness of set-valued optimization problems[J]. Mathematical Methods of Operations Research, 2001, 53(1):101-116.
[26] LUC D T. Theory of vector optimization, lecture notes in economics and mathematical systems, vol.319[M]. Berlin: Springer, 1989.
[27] ROCKAFELLAR R T, WETS R J B. Variational analysis[M]. Berlin, Heidelberg: Springer Heidelberg, 1998.
[28] KUARTOWSKI K. Topology, vol 1 and 2[M]. New York: Academic Press, 1968.
[29] AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York: Wiley, 1984.
[30] GÖPFERT A, RIAHI H, TAMMER C, et al. Variational methods in partially ordered spaces[M]. Berlin: Springer, 2003.
[31] HAN Yu. Nonlinear scalarizing functions in set optimization[J]. Optimization, 2019, 68(9):1685-1718.
[1] ZHANG Yu-qian, ZHANG Tai-lei. An SEAIR model with relapse effect and its application in COVID-19 transmission [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 56-68.
[2] SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49.
[3] ZHU Yan-lan, ZHOU Wei, CHU Tong, LI Wen-na. Complex dynamic analysis of the duopoly game under management delegation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 32-45.
[4] ZHOU Yan, ZHANG Cun-hua. Stability and Turing instability of a predator-prey reaction-diffusion system with schooling behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 73-81.
[5] GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38.
[6] LU Chang-na, CHANG Sheng-xiang. Finite element method of Cahn-Hilliard equation based on adaptive moving mesh method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 17-25.
[7] Jie TANG,Ling WEI,Rui-si REN,Si-yu ZHAO. Granule description using possible attribute analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 75-82.
[8] YANG Zhong-liang, GUO Gai-hui. Bifurcation analysis of positive solutions for a predator-prey model with B-D functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 9-15.
[9] YANG Yang, WU Bao-wei, WANG Yue-e. Input-output finite time stability of asynchronous switched systems with event-triggered [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 118-126.
[10] WEN Xiao, LIU Qi, GAO Zhen, DON Wai-sun, LYU Xian-qing. Application of local non-intrusive reduced basis method in Rayleigh-Taylor instability [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 109-117.
[11] CHEN Lu, ZHANG Xiao-guang. Research of an epidemic model on adaptive networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 76-82.
[12] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[13] FENG Na-na, WU Bao-wei. Input-output finite time stability for event-triggered control of switched singular systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 75-84.
[14] ZHANG Yu, ZHAO Ren-yu. Gorenstein FP-projective modules and its stability [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 79-85.
[15] DAI Li-hua, HUI Yuan-xian. Almost automorphic solutions for shunting inhibitory cellular neural networks with leakage delays on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 97-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!