JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (3): 64-76.doi: 10.6040/j.issn.1671-9352.0.2022.431
Previous Articles Next Articles
CHEN Jing-jing, YANG Yan-tao*
CLC Number:
[1] SIGNORINI A. Sopra alcune questioni di elastostatica[J]. Atti della Societa Italiana per il Progresso delle Scienze, 1933, 21(2):143-148. [2] ZHOU Haiyun, QIN Xiaolong. Fixed points of nonlinear operators[M]. Berlin: De Gruyter, 2020. [3] MAINGÉ P E. The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces[J]. Computers and Mathematics with Applications, 2010, 59(1):74-79. [4] TAN Bing, FAN Jingjing, QIN Xiaolong. Inertial extragradient algorithms with non-monotonic step sizes for solving variational inequalities and fixed point problems[J]. Advances in Operator Theory, 2021, 6(4):1-29. [5] GOEBEL K, REICH S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings[M]. New York: Marcel Dekker, 1984. [6] MAINGÉ P E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1499-1515. [7] XU Hongkun. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1):240-256. [8] YAO Y, LIOU Y C, KANG S M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method[J]. Computers & Mathematics with Applications, 2010, 59(11):3472-3480. [9] LINH H M, REICH S, THONG D V, et al. Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems[J]. Numerical Algorithms, 2022, 89(4):1695-1721. [10] NADEZHKINA N, TAKAHASHI W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings[J]. SIAM Journal on Optimization, 2006, 16(4):1230-1241. [11] DONG Qiaoli, YANG Jinfeng, YUAN Hanbo. The projection and contraction algorithm for solving variational inequality problems in Hilbert spaces[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(1):111-122. [12] ALVAREZ F, ATTOUCH H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[J]. Set-valued Analysis, 2001, 9(1):3-11. [13] ALVAREZ F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space[J]. SIAM Journal on Optimization, 2004, 14(3):773-782. [14] DONG Qiaoli, CHO Y J, ZHONG Lunlong, et al. Inertial projection and contraction algorithms for variational inequalities[J]. Journal of Global Optimization, 2018, 70(3):687-704. [15] THONG D V, VINH N T, CHO Y J. New strong convergence theorem of the inertial projection and contraction method for variational inequality problems[J]. Numerical Algorithms, 2020, 84(1):285-305. [16] THONG D V, HIEU D V. Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems[J]. Optimization, 2018, 67(1):83-102. [17] TIAN Ming, XU Gang. Improved inertial projection and contraction method for solving pseudomonotone variational inequality problems[J]. Journal of Inequalities and Applications, 2021, 107:1-20. [18] THONG D V, DUNG V T, LONG L V. Inertial projection methods for finding a minimum-norm solution of pseudomonotone variational inequality and fixed-point problems[J]. Computational and Applied Mathematics, 2022, 41(6):1-25. [19] THONG D V, HIEU D V. Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems[J]. Numerical Algorithms, 2019, 82:761-789. [20] TAN Bing, ZHOU Zheng, LI Songxiao. Viscosity-type inertial extragradient algorithms for solving variational inequality prob-lems and fixed point problems[J]. Journal of Applied Mathematics and Computing, 2022, 68(2):1387-1411. [21] 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6):1897-1911. HE Yuehong, LONG Xianjun. A inertial contraction and projection algorithm for pseudomonotone variational inequality probl-ems[J]. Acta Mathematica Scientia, 2021, 41(6):1897-1911. [22] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版),2018, 53(2):38-45. YANG Yantao. Modified subgradient extragradient method for solving monotone variational inequality problems[J]. Journal of Shandong University(Natural Science), 2018, 53(2):38-45. [23] 杨延涛, 陈晶晶, 周海云. 涉及拟反向强单调算子零点的一个弱收敛结果及其应用[J]. 浙江大学学报(理学版), 2022, 49(1):49-52. YANG Yantao, CHEN Jingjing, ZHOU Haiyun. A weak convergence theorem involving the zero point of quasi-inverse strongly monotone operators with application[J]. Journal of Zhejiang University(Science Edition), 2022, 49(1):49-52. [24] TAN Bing, FAN Jingjing, LI Songxiao. Self-adaptive inertial extragradient algorithms for solving variational inequality problems[J]. Computational and Applied Mathematics, 2021, 40(1):1-19. [25] YANG Jun, LIU Hongwei. Strong convergence result for solving monotone variational inequalities in Hilbert space[J]. Numerical Algorithms, 2019, 80(3):741-752. |
[1] | ZHANG Ji-feng, ZHANG Wei, WEI Hui, NI Jin-bo. Existence and uniqueness of solutions for fractional Langevin type equations with dual anti-periodic boundary conditions involving p-Laplace operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 91-100. |
[2] | LIU Meng-xue, LI Jie-mei, YAO Yan-yan. Multiplicity of positive solutions for fourth-order boundary value problems with nonlinear boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 84-91. |
[3] | WU Ruo-fei. Existence of solutions for singular fourth-order m-point boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 75-83. |
[4] | WANG Tian-xiang, LI Yong-xiang. Existence and uniqueness of solutions for a class fourth-order periodic boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 16-21. |
[5] | LI Zhao-qian. Existence and uniqueness of solutions for a class of nonlinear fourth-order boundary value problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 93-100. |
[6] | WANG Jing-jing, LU Yan-qiong. Existence of positive solutions for a class of semi-positive nonlinear elastic beam equation boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 84-92. |
[7] | AN Jia-hui, CHEN Peng-yu. Existence of solutions to initial value problems of fractional differential equations of variable-order [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 41-47. |
[8] | WANG Jing-jing, LU Yan-qiong. Existence of optimal positive solutions for Neumann boundary value problems of second order differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 113-120. |
[9] | LI Hai-xia. Qualitative analysis of a diffusive predator-prey model with density dependence [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 54-61. |
[10] | CHEN Rui-peng, LI Xiao-ya. Positive periodic solutions for second-order singular differential equations with damping terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 33-41. |
[11] | ZHANG Huan, LI Yong-xiang. Positive periodic solutions of higher-order ordinary differential equations with delayed derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 29-36. |
[12] | WEI Jin-ying, WANG Su-yun, LI Yong-jun. Existence of positive solutions to a semipositone second-order boundary value problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 7-12. |
[13] | SONG Jun-qiu, JIA Mei, LIU Xi-ping, LI Lin. Existence of positive solutions for fractional nonhomogeneous boundary value problem with p-Laplacian [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 57-66. |
[14] | LUO Qiang, HAN Xiao-ling, YANG Zhong-gui. Existence of positive solutions for boundary value problems of third-order delay differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 33-39. |
[15] | SHEN Liu-xiao, ZHAO Chun. Optimal control for inputting rate of a size-structure competitive system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 21-29. |
|