JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 48-56.doi: 10.6040/j.issn.1671-9352.0.2022.558

Previous Articles     Next Articles

Gorenstein AC-representations of linear quivers

Qing SUN(),Gang YANG*()   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2022-10-31 Online:2023-08-20 Published:2023-07-28
  • Contact: Gang YANG E-mail:18265891818@163.com;yanggang@mail.lzjtu.cn

Abstract:

Let Rep(Q, R) be the category of representations of R-modules over the linear quiver $ Q=(\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet)$. It is mainly studied and characterized Gorenstein AC-injective representations and Gorenstein AC-flat representations in Rep(Q, R) in the paper.

Key words: quiver representations, Gorenstein AC-injective representations, Gorenstein AC-flat representations

CLC Number: 

  • O154.2
1 GABRIEL P . Unzelegbare darstellungen Ⅰ[J]. Manuscripta Mathematica, 1972, 6 (1): 71- 103.
doi: 10.1007/BF01298413
2 ENOCHS E , ESTRADA S . Projective representations of quivers[J]. Communications in Algebra, 2005, 33 (10): 3467- 3478.
doi: 10.1081/AGB-200058181
3 ENOCHS E , ESTRADA S , GARCÍAROZAS J R . Injective representations of infinite quivers. Applications[J]. Canadian Journal of Mathematics, 2009, 61 (2): 315- 335.
doi: 10.4153/CJM-2009-016-2
4 ENOCHS E , OYONARTE L , TORRECILLAS B . Flat covers and flat representations of quivers[J]. Communications in Algebra, 2004, 32 (4): 1319- 1338.
doi: 10.1081/AGB-120028784
5 ESHRAGHI H , HAFEZI R , SALARIAN S . Total acyclicity for complexes of representations of quivers[J]. Communications in Algebra, 2013, 41 (12): 4425- 4441.
doi: 10.1080/00927872.2012.701682
6 HOSSEINI E . Pure injective representations of quivers[J]. Bulletin of the Korean Mathematical Society, 2013, 50 (2): 389- 398.
doi: 10.4134/BKMS.2013.50.2.389
7 DALEZIOS G . Abelian model structures on categories of quiver representations[J]. Journal of Algebra and Its Applications, 2020, 19 (10): 2050195.
doi: 10.1142/S0219498820501959
8 DI Z , ESTRADA S , LIANG L , et al. Gorenstein flat representations of left rooted quivers[J]. Journal of Algebra, 2021, 584, 180- 214.
doi: 10.1016/j.jalgebra.2021.05.008
9 ODABAŞIS . Completeness of the induced cotorsion pairs in categories of quiver representations[J]. Journal of Pure and Applied Algebra, 2019, 223 (10): 4536- 4559.
doi: 10.1016/j.jpaa.2019.02.003
10 ENOCHS E E , JENDA O M G . Relative homological algebra: Volume 1[M]. Berlin: Walter de Gruyter, 2011.
11 STENSTRÖM B . Coherent rings and FP-injective modules[J]. Journal of the London Mathematical Society, 1970, (2): 323- 329.
12 HOLM H , JORGENSEN P . Cotorsion pairs in categories of quiver representations[J]. Kyoto Journal of Mathematics, 2019, 59 (3): 575- 606.
13 BRAVO D, GILLESPIE J, HOVEY M. The stable module category of a general ring[EB/OL]. 2014: arXiv: 1405.5768. https://arxiv.org/abs/1405.5768
14 王兴. Gorenstein AC-同调维数有限性的若干判别准则[D]. 兰州: 兰州交通大学, 2021.
WANG Xing. Some criteria for the finiteness of gorenstein AC-homology dimension[D]. Lanzhou: Lanzhou Jiaotong University, 2021.
15 孙情, 杨刚. 箭图表示的绝对Clean性质[J]. 西南师范大学学报(自然科学版), 2022, 47 (2): 16- 20.
SUN Qing , YANG Gang . Absolutely cleanness of quiver representations[J]. Journal of Southwest China Normal University (Natural Science Edition), 2022, 47 (2): 16- 20.
16 BRAVO D , ESTRADA S , IACOB A . FPn-injective, FPn-flat covers and preenvelopes, and Gorenstein AC-flat covers[J]. Algebra Colloquium, 2018, 25 (2): 319- 334.
doi: 10.1142/S1005386718000226
[1] Yadong LUO,Gang YANG. Gorenstein cotorsion modules of Noetherian rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 38-42.
[2] Guoliang TANG. Construction of Gorenstein projective modules over tensor rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 33-37.
[3] CHEN Mei-hui, LIANG Li. Strongly Gorenstein projective objects in comma categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 81-85.
[4] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[5] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[6] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[7] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[8] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[9] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[10] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[13] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[14] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[15] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[2] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[3] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[4] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[5] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[6] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[7] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[10] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .