JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (10): 13-22.doi: 10.6040/j.issn.1671-9352.0.2025.168
HAN Xinxin, LI Mengqi, ZHANG Peiyu*, CUI Jiwei*
CLC Number:
[1] JAHAN R, BODRATTI A M, TSIANOU M, et al. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications[J]. Advances in Colloid and Interface Science, 2020, 275:102061. [2] KUGAJI M, RAY S K, PARVATIKAR P, et al. Biosurfactants: a review of different strategies for economical production, their applications and recent advancements[J]. Advances in Colloid and Interface Science, 2025, 337:103389. [3] CAROLIN C F, KUMAR P S, NGUEAGNI P T. A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process[J]. Journal of Hazardous Materials, 2021, 407:124827. [4] GAUDIN T, LU H L, FAYET G, et al. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: a literature overview[J]. Advances in Colloid and Interface Science, 2019, 270:87-100. [5] MCCLURE C D, SCHILLER N L. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages[J]. Journal of Leukocyte Biology, 1992, 51(2):97-102. [6] ANDRÄ J, RADEMANN J, HOWE J, et al. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia(Pseudomonas)plantarii: immune cell stimulation and biophysical characterization[J]. Biological Chemistry, 2006, 387(3):301-310. [7] REZANKA T, SIRISTOVA L, SIGLER K. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus[J]. Extremophiles, 2011, 15(6):697. [8] FRANZETTI A, GANDOLFI I, BESTETTI G, et al. Production and applications of trehalose lipid biosurfactants[J]. European Journal of Lipid Science and Technology, 2010, 112(6):617-627. [9] GAO P K, LI G Q, LI Y S, et al. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery[J]. Frontiers in Microbiology, 2016, 7:186. [10] LI J F, LI H F, LIANG S K, et al. Characterization of sophorolipids from the yeast Starmerella bombicola O-13-1 using waste fried oil and cane molasses as substrates[J]. Desalination and Water Treatment, 2018, 119:267-275. [11] TAKAHASHI M, MORITA T, WADA K, et al. Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243[J]. Journal of Oleo Science, 2011, 60(5):267-273. [12] DAVEREY A, PAKSHIRAJAN K, SUMALATHA S. Sophorolipids production by Candida bombicola using dairy industry wastewater[J]. Clean Technologies and Environmental Policy, 2011, 13(3):481-488. [13] MORITA T, KONISHI M, FUKUOKA T, et al. Efficient production of di-and tri-acylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCM 11752T[J]. Journal of Oleo Science, 2008, 57(10):557-565. [14] MORITA T, OGURA Y, TAKASHIMA M, et al. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids[J]. Journal of Bioscience and Bioengineering, 2011, 112(2):137-144. [15] KONISHI M, NAGAHAMA T, FUKUOKA T, et al. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62[J]. Journal of Bioscience and Bioengineering, 2011, 111(6):702-705. [16] FARIA N T, MARQUES S, FONSECA C, et al. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma Antarctica PYCC 5048T[J]. Enzyme and Microbial Technology, 2015, 71:58-65. [17] MORITA T, FUKUOKA T, IMURA T, et al. Mannosylerythritol lipids: production and applications[J]. Journal of Oleo Science, 2015, 64(2):133-141. [18] SANDRIN C, PEYPOUX F, MICHEL G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis[J]. Biotechnology and Applied Biochemistry, 1990, 12(4):370-375. [19] BOUCHARD-ROCHETTE M, MACHRAFI Y, COSSUS L, et al. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: production of lipopeptides, antifungal activity, and biocontrol ability against botrytis cinerea[J]. Biological Control, 2022, 170:104925. [20] SLIVINSKI C T, MALLMANN E, DE ARAÚJO J M, et al. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent[J]. Process Biochemistry, 2012, 47(12):1848-1855. [21] STANSLY P G, SCHLOSSER M E. Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics[J]. Journal of Bacteriology, 1947, 54(5):549-556. [22] SRIRAM M I, GAYATHIRI S, GNANASELVI U, et al. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation[J]. Bioresource Technology, 2011, 102(19):9291-9295. [23] BEZZA F A, CHIRWA E M N. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2[J]. Biochemical Engineering Journal, 2015, 101:168-178. [24] WANG F H, GUO Z H, YANG Z X, et al. Utilization of soybean oil waste for a high-level production of ceramide by a novel phospholipase C as an environmentally friendly process[J]. Journal of Agricultural and Food Chemistry, 2022, 70(10):3228-3238. [25] BODOUR A A, GUERRERO-BARAJAS C, JIORLE B V, et al. Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11[J]. Applied and Environmental Microbiology, 2004, 70(1):114-120. [26] JOHRI A K, YALPANI M, KAPLAN D L. Incorporation of fluorinated fatty acids into emulsan by Acinetobacter calcoaceticus RAG-1[J]. Biochemical Engineering Journal, 2003, 16(2):175-181. [27] KAPLAN N, ROSENBERG E. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413[J]. Applied and Environmental Microbiology, 1982, 44(6):1335-1341. [28] ROSENBERG E, RUBINOVITZ C, GOTTLIEB A, et al. Production of biodispersan by Acinetobacter calcoaceticus A2[J]. Applied and Environmental Microbiology, 1988, 54(2):317-322. [29] ANDREW M, JAYARAMAN G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14[J]. Preparative Biochemistry & Biotechnology, 2025, 55(1):112-130. [30] RAMANI K, JAIN S C, MANDAL A B, et al. Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution[J]. Colloids and Surfaces B:Biointerfaces, 2012, 97:254-263. [31] CAMPOS J M, STAMFORD T L M, SARUBBO L A. Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings[J]. Biodegradation, 2019, 30(4):313-324. [32] COHEN R, EXEROWA D. Surface forces and properties of foam films from rhamnolipid biosurfactants[J]. Advances in Colloid and Interface Science, 2007, 134:24-34. [33] BAI L, MCCLEMENTS D J. Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids[J]. Journal of Colloid and Interface Science, 2016, 479:71-79. [34] GARCIA M T, RIBOSA I, KOWALCZYK I, et al. Biodegradability and aquatic toxicity of new cleavable betainate cationic oligomeric surfactants[J]. Journal of Hazardous Materials, 2019, 371:108-114. [35] SONBHADRA S, MISHRA A, PANDEY L M. Natures marvels: exploring the multifaceted applications of surfactin and rhamnolipids[J]. Langmuir, 2025, 41(6):3731-3743. [36] ASNACHINDA E, KHAMPAENG C, SUTTHINON P, et al. Enhancement of styrene adsolubilization and solubilization by rhamnolipid biosurfactant-linker mixtures onto an aluminum oxide surface[J]. Journal of Surfactants and Detergents, 2015, 18(3):439-444. [37] BACCILE N, POIRIER A, PEREZ J, et al. Self-assembly of rhamnolipid bioamphiphiles: understanding the structure-property relationship using small-angle X-ray scattering[J]. Langmuir, 2023, 39(27):9273-9289. [38] LONG X W, HE N, HE Y K, et al. Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier[J]. Bioresource Technology, 2017, 241:200-206. [39] LÓPEZ-VALENCIA L, MOYA M, ESCUDERO B, et al. Bacterial lipopolysaccharide forms aggregates with apolipoproteins in male and female rat brains after ethanol binges[J]. Journal of Lipid Research, 2024, 65(3):100509. [40] ZHANG W K, LIU S S, KONG L, et al. Lipopolysaccharide-induced persistent inflammation ameliorates fat accumulation by promoting adipose browning in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2023, 252:126511. [41] AL-BAHRY S N, AL-WAHAIBI Y M, ELSHAFIE A E, et al. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery[J]. International Biodeterioration & Biodegradation, 2013, 81:141-146. [42] PIEDRAHÍTA-AGUIRRE C A, ALEGRE R M. Production of lipopeptide iturin a using novel strain Bacillus iso 1 in a packed bed bioreactor[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(2):154-158. [43] FEMINA CAROLIN C, SENTHIL KUMAR P, CHITRA B, et al. Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline[J]. Journal of Hazardous Materials, 2021, 415:125716. [44] WU T F, LIU C M, HU X T. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: a review[J]. Food Chemistry, 2022, 372:131332. [45] ZHOU Y, PETROVA S P, EDGAR K J. Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: a review[J]. Carbohydrate Polymers, 2021, 274:118662. [46] THAKUR V, BAGHMARE P, VERMA A, et al. Recent progress in microbial biosurfactants production strategies:applications, technological bottlenecks, and future outlook[J]. Bioresource Technology, 2024, 408:131211. [47] BANAT I M, FRANZETTI A, GANDOLFI I, et al. Microbial biosurfactants production, applications and future potential[J]. Applied Microbiology and Biotechnology, 2010, 87(2):427-444. [48] LIU Y H, LIN S, ZHANG X Q, et al. A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(8):1227-1235. [49] ISASCHAR-OVDAT S, FISHMAN A. Crosslinking of food proteins mediated by oxidative enzymes: a review[J]. Trends in Food Science & Technology, 2018, 72:134-143. [50] BUHORI A, LEE J, CHA M J, et al. Synthesis of biosurfactants from polyethylene waste via an integrated chemical and biological process[J]. Journal of Environmental Chemical Engineering, 2024, 12(5):113322. [51] PALA M, CASTELEIN M G, DEWAELE C, et al. Tuning the antimicrobial activity of microbial glycolipid biosurfactants through chemical modification[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12:1347185. [52] SHI Y B, ZHANG L H, ZHANG M, et al. A CRISPR-Cas9 system-mediated genetic disruption and multi-fragment assembly in Starmerella bombicola[J]. ACS Synthetic Biology, 2022, 11(4):1497-1509. [53] MUNEESWARI R, IYAPPAN S, SWATHI K V, et al. Biocatalytic lipoprotein bioamphiphile induced treatment of recalcitrant hydrocarbons in petroleum refinery oil sludge through transposon technology[J]. Journal of Hazardous Materials, 2022, 431:128520. [54] BEZZA F A, CHIRWA E M N. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons(PAHs)-contaminated soil[J]. Chemical Engineering Journal, 2017, 309:563-576. [55] KHONDEE N, SUKSOMBOON B, KHUN-ARWUT N, et al. Scaled-up production and recovery of lipopeptide biosurfactant and its application for washing petroleum-contaminated drill cuttings[J]. Journal of Environmental Chemical Engineering, 2024, 12(6):114605. [56] LI Z Z, LIN J Z, WANG W D, et al. Effect of rhamnolipid amidation on biosurfactant adsorption loss and oil-washing efficiency[J]. Langmuir, 2022, 38(8):2435-2444. [57] CHENG W M, LIU J D, FENG Y, et al. Study on the cooperation mechanism of urea-hydrolysis bacteria and biosurfactant bacteria for dust suppression[J]. Chemical Engineering Journal, 2024, 480:148008. [58] TANG J, HE J G, XIN X D, et al. Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment[J]. Chemical Engineering Journal, 2018, 334:2579-2592. [59] PORTET-KOLTALO F, AMMAMI M T, BENAMAR A, et al. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants[J]. Journal of Hazardous Materials, 2013, 261:593-601. [60] PEREZ-AMENEIRO M, VECINO X, CRUZ J M, et al. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite[J]. Carbohydrate Polymers, 2015, 131:186-196. [61] REN H Y, HOU D Y, ZHOU S Y, et al. Study on the effect of petroleum components on the elution of oily sludge by a compound biosurfactant[J]. Langmuir, 2022, 38(6):2026-2037. [62] LIU J, KANG R, TANG D L. Lipopolysaccharide delivery systems in innate immunity[J]. Trends in Immunology, 2024, 45(4):274-287. [63] OHADI M, FOROOTANFAR H, DEHGHANNOUDEH N, et al. The role of surfactants and biosurfactants in the wound healing process:a review[J]. Journal of Wound Care, 2023, 32:39-46. [64] WANG X, LIU G Q, PU X Y, et al. Combating cisplatin-resistant lung cancer using a coiled-coil lipopeptides modified membrane fused drug delivery system[J]. Journal of Controlled Release, 2025, 379:45-58. [65] ZHANG Z J, ZHANG X, XU X H, et al. Virus-inspired mimics based on dendritic lipopeptides for efficient tumor-specific infection and systemic drug delivery[J]. Advanced Functional Materials, 2015, 25(33):5250-5260. [66] DE LA FUENTE-HERRERUELA D, MONNAPPA A K, MUÑOZ-ÚBEDA M, et al. Lipid-peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery[J]. Journal of Nanobiotechnology, 2019, 17(1):77. [67] ADAK A, CASTELLETTO V, HAMLEY I W, et al. Self-assembly and wound healing activity of biomimetic cycloalkane-based lipopeptides[J]. ACS Applied Materials & Interfaces, 2024, 16(43):58417-58426. [68] GAO B H, RAO C Y, LEI X M, et al. Comprehensive insights into yeast mannoproteins: structural heterogeneity, winemaking, food processing, and medicine food homology[J]. Food Research International, 2025, 202:115719. [69] DOKOUHAKI M, HUNG A, KASAPIS S, et al. Hydrophobins and chaplins:novel bio-surfactants for food dispersions a review[J]. Trends in Food Science & Technology, 2021, 111:378-387. [70] VILLANUEVA M E, BAR L, REDONDO-MORATA L, et al. Spontaneous nanotube formation of an asymmetric glycolipid[J]. Journal of Colloid and Interface Science, 2024, 671:410-422. [71] BAE S H, YOO S, LEE J S, et al. A lipid nanoparticle platform incorporating trehalose glycolipid for exceptional mRNA vaccine safety[J]. Bioactive Materials, 2024, 38:486-498. |
[1] | Guang CHEN,Jiangtao LYU,Xueliang QIU,Libing DING,Yichen CAI,Yue CHEN,Zhenxue LIU,Lushan WANG. Key preparation processes and applications of arabinoxylan [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(11): 20-30. |
[2] | Shuzhen CHEN,Kaiquan SHI,Shouwei LI. Embedded generation of micro-information and its intelligent hiding-restoration [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 1-9. |
[3] | LI Shou-wei, SHI Kai-quan. Inverse separated fuzzy set ((-overA)F,(-overA)(-overF)) and secure acquisition of fuzzy information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 1-14. |
[4] | SHI Kai-quan, LI Shou-wei. Separated fuzzy set (A(-overF),AF) and the intelligent fusion of fuzzy information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 1-13. |
[5] | CHEN Shu-zhen, LI Shou-wei, SHI Kai-quan. Fusion-separation of information and explicit characteristics of implicit attributes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 1-9. |
[6] | Ying LI,Jun HU. Hierarchical trusted cryptography service framework based on distributed message drive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 19-27. |
[7] | Feng-sheng XU,Xiu-qing YU,Li-hua ZHANG. Intelligent fusion of information and reasoning generation of its P-augmented matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 22-28. |
[8] | MENG Li, WANG Qian, CHAI Shu, ZHU Wei-qun. Catalytic amination of sym-triazinetriol with diethylenetriamine [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 88-94. |
[9] | ZHANG Yao-jun, WAN Gang-qiang, YAN Lei, MA Qing-chang, LI Dong-xiang, ZHAO Ji-kuan. Assembled nanostructures of ZnO nanorods prepared by seed growth method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 14-19. |
[10] | LI Jia-qi, DENG Yu-zhou, LIU Gang, YUE Ren-liang, YANG Jun, CHEN Yun-fa. The application of flame combustion synthesis in the preparation of metal oxide and supported noble metal catalysts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 1-13. |
[11] | CHEN Lei, JIN Zhi, LIU Qiang, WANG Ming, WANG Pu*. Novel synthesis of C-terminal polypeptides by ISPPS method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 31-35. |
[12] | SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1-17. |
[13] | . Scheme of hierarchical content extraction signature based on non-credible PKG identity-based signature [J]. J4, 2012, 47(9): 7-14. |
[14] | HAN Lu1, SHENG Dao-peng1, WEI Hui-ying1, YANG Yan-zhao1,2 *. Synthesis and characterization of a novel coordination complex [Ni(Hpdc)(2,2’-bipy)(H2O)2]·H2O [J]. J4, 2012, 47(5): 9-12. |
[15] | JIN Zhi, HU Nai-feng, LIU Qiang, WANG Pu*. Application of TbfmocMetOH for solid phase synthesis of ubiquitin [J]. J4, 2011, 46(7): 21-25. |
|