JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 84-92.doi: 10.6040/j.issn.1671-9352.0.2023.323
Previous Articles Next Articles
MA Tiantian, LI Shanbing*
CLC Number:
[1] DENNIS B. Allee effects: population growth, critical density, and the chance of extinction[J]. Natural Resource Modeling, 1989, 3(4):481-538. [2] LI Shuai, YUAN Sanling, JIN Zhen, et al. Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator[J]. Journal of Differential Equations, 2023, 357:32-63. [3] BOUKAL D S, SABELIS M W, LUDEK B. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses[J]. Theoretical Population Biology, 2007, 72(1):136-147. [4] WU Daiyong, ZHAO Hongyong. Spatiotemporal dynamics of a diffusive predator-prey system with Allee effect and threshold hunting[J]. Journal of Nonlinear Science, 2020, 30(3):1015-1054. [5] SEN D, MOROZOV A, GHORAI S, et al. Bifurcation analysis of the predator-prey model with the Allee effect in the predator[J]. Mathematical Biology, 2021, 84(1):1-27. [6] RANA S, BHATTACHARYA S, SAMANTA S. Complex dynamics of a three-species food chain model with fear and Allee effect[J]. International Journal of Bifurcation and Chaos, 2022, 32(6):1-27. [7] KUANG Y, SO W H. Analysis of a delayed two-stage population model with space-limited recruitment[J]. SIAM Journal on Applied Mathematics, 1995, 55(6):1675-1696. [8] RANA S, BHOWMICK A R, SARDAR T. Invasive dynamics for a predator-prey system with Allee effect in both populations and a special emphasis on predator mortality[J]. Chaos, 2021, 31(3):1-22. [9] FRAILE J M, MEDINA P K, LÓPEZ-GÓMEZ J, et al. Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation[J]. Journal of Differential Equations, 1996, 127(1):295-319. [10] 叶其孝,李正元,王明新,等. 反应扩散方程引论[M]. 北京:科学出版社,2011. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 2011. [11] 郭大钧. 非线性泛函分析[M]. 北京:高等教育出版社,2015. GUO Dajun. Nonlinear functional analysis[M]. Beijing: Higher Education Press, 2015. [12] DANCER E N. On positive solutions of some pairs of differential equations[J]. Transactions of the American Mathematical Society, 1984, 284(2):729-743. [13] LI L. Coexistence theorems of steady-states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1):143-143. [14] DANCER E N. On the indices of fixed points of mappings in cones and applications[J]. Journal of Mathematical Analysis and Applications, 1983, 91(1):131-151. [15] NAKASHIMA K, YAMADA Y. Positive steady states for prey-predator models with cross-diffusion[J]. Advances in Differential Equations, 1996, 1(6):1099-1122. [16] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 1983. |
[1] | XU Yingting, ZHAO Jiantao, WEI Xin. Dynamical analysis in a diffusive predator-prey model with cooperative hunting and group defense [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 104-117. |
[2] | Yufeng ZHAO,Guirong LIU. Stationary distribution and probability density function of a stochastic predation system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 74-88. |
[3] | Qian CAO,Yanling LI,Weihua SHAN. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53. |
[4] | Hang ZHANG,Yujuan JIAO,Jinmiao YANG. Existence of traveling wave solutions for a diffusive predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 97-105. |
[5] | SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90. |
[6] | HAN Zhuo-ru, LI Shan-bing. Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 35-42. |
[7] | ZHANG Bei-bei, XU Yao, ZHOU You, LING Zhi. Properties of the species invasion model with Allee effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 50-55. |
[8] | WANG Jing, FU Sheng-mao. Effect of fear factor on a predator-prey model with defense mechanish [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 121-126. |
[9] | LI Hai-xia. Qualitative analysis of a diffusive predator-prey model with density dependence [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 54-61. |
[10] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[11] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[12] | ZHANG Rui-ling, WANG Wan-xiong, QIN Li-juan. Prisoner's dilemma game of two-species with the strong Allee effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 98-103. |
[13] | LI Hai-xia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 88-94. |
[14] | ZHANG Li-na, WU Shou-yan. Global behavior of solutions for a modified LeslieGower #br# predator-prey system with diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 86-91. |
[15] | WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94. |
|