JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (7): 1-12.doi: 10.6040/j.issn.1671-9352.4.2024.126
YE Xiaoya1,2,3, WANG Xiuqing1,2,3*, MA Haibin1,2,3, ZHANG Nuofei1,2,3
CLC Number:
[1] JIAO Runhai, LI Chengyang, XUN Gangyi, et al. A context-aware multi-event identification method for nonintrusive load monitoring[J]. IEEE Transactions on Consumer Electronics, 2023, 69(2):194-204. [2] ZHANG Yu, LI Penghai, CHENG Longlong, et al. Attention-based multiscale spatial-temporal convolutional network for motor imagery EEG decoding[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1):2423-2434. [3] AHMED I, JEON G, PICCIALLI F. From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8):5031-5042. [4] WILLIAMS S C, HORSFALL H L, FUNNELL J P, et al. Neurosurgical team acceptability of brain-computer interfaces: a two-stage international cross-sectional survey[J]. World Neurosurgery, 2022, 164:884-898. [5] LI Hongli, LIU Haoyu, CHEN Hongyu, et al. Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement[J]. Journal of Biomedical Engineering, 2023, 40(3):418-425. [6] CHUNDURI V, AOUNDNI Y, KHAN S, et al. Multi-scale spatiotemporal attention network for neuron based motor imagery EEG classification[J]. Journal of Neuroscience Methods, 2024, 406:110-128. [7] GAO Dongrui, YANG Wen, LI Pengrui, et al. A multiscale feature fusion network based on attention mechanism for motor imagery EEG decoding[J]. Applied Soft Computing, 2024, 151:111-129. [8] LI Hongli, CHEN Hongyu, JIA Ziyu, et al. A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification[J]. Biomedical Signal Processing and Control, 2023, 79:104066. [9] LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of neural engineering, 2018, 15(5):056013. [10] ZHANG Yu, WANG Yu, ZHOU Guoxu, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces[J]. Expert Systems with Applications, 2018, 96:302-310. [11] ANG K K, CHIN Z Y, ZHANG H, et al. Filter bank common spatial pattern(FBCSP)in brain-computer interface[C] //2008 IEEE International Joint Conference on Neural Networks, Hong Kong: IEEE, 2390-2397. [12] 吕璐,程虎,朱鸿泰,等. 基于深度学习的目标检测研究与应用综述[J]. 电子与封装,2022,22(1):72-80. LV Lu, CHENG Hu, ZHU Hongtai, et al. Review of research and application of target detection based on deep learning[J]. Electrons and Packaging, 2022, 22(1):72-80. [13] INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces[C] //2020 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Toronto: IEEE, 2020:2958-2965. [14] ALTAHERI H, MUHAMMAD G, ALSULAIMAN M. Dynamic convolution with multilevel attention for EEG-based motor imagery decoding[J]. IEEE Internet of Things Journal, 2023, 10(21):18579-18588. [15] ALTUWAIJRI G, MUHAMMAD G. A multibranch of convolutional neural network models for electroencephalogram-based motor imagery classification[J]. Biosensors, 2022, 12(1):22. [16] 王蒙昊,方慧娟,龚亨翔,等. 应用多尺度混合卷积网络的脑电信号特征提取与识别[J]. 华侨大学学报(自然科学版),2023,44(5):628-635. WANG Menghao, FANG Huijuan, GONG Hengxiang, et al. Feature extraction and identification of EEG signals using multi-scale hybrid convolutional networks[J]. Journal of Huaqiao University(Natural Science Edition), 2023, 44(5):628-635. [17] TANG Xianlun, YANG Caiquan, SUN Xia, et al. Motor imagery EEG decoding based on multi-scale hybrid networks and feature enhancement[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31:1208-1218. [18] GUENNEC A L, MALINOWSKI S, TAVENARD R. Data augmentation for time series classification using convolutional neural networks[C] //European Conference on Principles of Data Mining and Knowledge Discovery. Riva del Garda, Italy: IEEE, 2016. [19] KIM S K, KIRCHNER E A, STEFES A, et al. Intrinsic interactive reinforcement learning-using error-related potentials for real world human-robot interaction[J]. Scientific Reports, 2017, 7(1):1-16. [20] LOTTE F. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces[J]. Proceedings of the IEEE, 2015, 103(6):871-890. [21] WANG Fang, ZHONG Shenhua, PENG Jianfen, et al. Data augmentation for EEG-based emotion recognition with deep convolutional neural networks[C] //MultiMedia Modeling: 24th International Conference, MMM 2018. Tokyo: Springer, 2018. [22] LI Youjun, HUANG Jiajin, ZHOU Haiyan, et al. Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks[J]. Applied Sciences, 2017, 7(10):1060. [23] BRUNNER C, LEEB R, MULLER-PUTZ G et al. BCI competition 2008-Graz data set A[DB/OL].(2008-07-03)[2014-01-17]. https://ieee-dataport.org/documents/bci-competition-2008. [24] ZHANG C, KIM Y K, ESKANDARIAN A. EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification[J]. Journal of Neural Engineering, 2021, 18(4):046014. [25] SALAMI A, ANDREU-PEREZ J, GILLMEISTER H. EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification[J]. IEEE Access, 2022, 10:36672-36685. [26] 刘近贞,叶方方,熊慧. 基于卷积神经网络的多类运动想象脑电信号识别[J]. 浙江大学学报(工学版),2021,55(11):2054-2066. LIU Jinzhen, YE Fangfang, XIONG Hui. Multi-class motor imagery EEG signal recognition based on convolutional neural networks[J]. Journal of Zhejiang University(Engineering Edition), 2021, 55(11):2054-2066. [27] KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications: a survey[J]. Mechanical Systems and Signal Processing, 2021, 151:107398. [28] SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[C] //2017 IEEE Signal Processing in Medicine and Biology Symposium(SPMB). Los Angeles: IEEE, 2017:1-7. [29] YANG Jun, MA Zhengmin, SHEN Tao. Multi-time and multi-band CSP motor imagery EEG feature classification algorithm [J]. Applied Sciences, 2021, 11(21):10294. [30] ALTUWAIJRI G A, MUHAMMAD G. Electroencephalogram-based motor imagery signals classification using a multi-branch convolutional neural network model with attention blocks[J]. Bioengineering(Basel), 2022, 9(7):323. [31] MA Weifeng, XUE Haojie, SUN Xiaoyong, et al. A novel multi-branch hybrid neural network for motor imagery EEG signal classification [J]. Biomedical Signal Processing and Control, 2022, 77:103718. |
[1] | Xia LIANG,Jie GUO. A method of online teaching platform selection based on online reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(9): 108-118. |
[2] | Chao LI,Wei LIAO. Chinese disease text classification model driven by medical knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 122-130. |
[3] | Jie JI,Chengjie SUN,Lili SHAN,Boyue SHANG,Lei LIN. A prompt learning approach for telecom network fraud case classification [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 113-121. |
[4] | Qi LUO,Gang GOU. Multimodal conversation emotion recognition based on clustering and group normalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 105-112. |
[5] | Fengxu ZHAO,Jian WANG,Yuan LIN,Hongfei LIN. Probability distribution optimization model for learning to rank [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 95-104. |
[6] | Xingyu HUANG,Mingyu ZHAO,Ziyu LYU. Category-wise knowledge probers for representation learning of graph neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 85-94. |
[7] | Liang GUI,Yao XU,Shizhu HE,Yuanzhe ZHANG,Kang LIU,Jun ZHAO. Factual error detection in knowledge graphs based on dynamic neighbor selection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 76-84. |
[8] | Ning XIAN,Yixing FAN,Tao LIAN,Jiafeng GUO. Noise network alignment method integrating multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 64-75. |
[9] | Chengjie SUN,Zongwei LI,Lili SHAN,Lei LIN. A document-level event extraction method based on core arguments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 53-63. |
[10] | Peiyu LIU,Bowen YAO,Zefeng GAO,Wayne Xin ZHAO. Matrix product operator based sequential recommendation model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 44-52, 104. |
[11] | Wei SHAO,Gaoyu ZHU,Lei YU,Jiafeng GUO. Dimensionality reduction and retrieval algorithms for high dimensional data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 27-43. |
[12] | Jiyuan YANG,Muyang MA,Pengjie REN,Zhumin CHEN,Zhaochun REN,Xin XIN,Fei CAI,Jun MA. Research on self-supervised pre-training for recommender systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 1-26. |
[13] | Haisu CHEN,Jiachun LIAO,Sicheng YAO. Identification and statistical analysis methods of personal information disclosure in open government data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 95-106. |
[14] | Xin WEN,Deyu LI. The ML-KNN method based on attribute weighting [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 107-117. |
[15] | Xueqiang ZENG,Yu SUN,Ye LIU,Zhongying WAN,Jiali ZUO,Mingwen WANG. Emoji embedded representation based on emotion distribution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 81-94. |
|