JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (7): 32-47.doi: 10.6040/j.issn.1671-9352.0.2024.063
LI Ji1,2,3, LIU Aiwen1,2*, QIN Liu1,2
CLC Number:
[1] GAIDAI O, CAO Y, LOGINOV S. Global cardiovascular diseases death rate prediction[J]. Current Problems in Cardiology, 2023, 48(5):101622. [2] ZENG X, STAIB L, SCHULTZ R, et al. Volumetric layer segmentation using coupled surfaces propagation[C] //1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(Cat. No.98CB36231). Santa Barbara:IEEE, 1998:708-715. [3] PRATONDO A, CHUI C K, ONG S H. Robust edge-stop functions for edge-based active contour models in medical image segmentation[J]. IEEE Signal Processing Letters, 2016, 23(2):222-226. [4] LYNCH M, GHITA O, WHELAN P F. Left-ventricle myocardium segmentation using a coupled level-set with a priori know-ledge[J]. Computerized Medical Imaging and Graphics, 2006, 30(4):255-262. [5] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277. [6] LI C, KAO C, GORE J, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10):1940-1949. [7] LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12):3243-3254. [8] SHI Xue, LI Chunming. Convexity preserving level set for left ventricle segmentation[J]. Magnetic Resonance Imaging, 2021, 78:109-118. [9] KIM Y C, KIM S M, CHOE Y H. Robust semi-automated quantification of cardiac MR perfusion using level set: application to hypertrophic cardiomyopathy patient data[J]. Computers in Biology and Medicine, 2016, 71:162-173. [10] CIECHOLEWSKI M. An edge-based active contour model using an inflation/deflation force with a damping coefficient[J]. Expert Systems with Applications, 2016, 44:22-36. [11] WALI S, LI C, IMRAN M, et al. Level-set evolution for medical image segmentation with alternating direction method of multipliers[J]. Signal Processing, 2023, 211:109105. [12] WANG Lei, CHANG Yan, WANG Hui, et al. An active contour model based on local fitted images for image segmentation[J]. Information Sciences, 2017, 418-419:61-73. [13] WANG Lei, CHEN Guangqiang, SHI Dai, et al. Active contours driven by edge entropy fitting energy for image segmentation[J]. Signal Processing, 2018, 149:27-35. [14] WANG Lei, ZHANG Libo, YANG Xiaodong, et al. Level set based segmentation using local fitted images and inhomogeneity entropy[J]. Signal Processing, 2020, 167:107297. [15] SHI Xue, LI Chunming. Anatomical knowledge based level set segmentation of cardiac ventricles from MRI[J]. Magnetic Resonance Imaging, 2022, 86:135-148. [16] LEE H, CODELLA N, CHAM M, et al. Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(4):905-913. [17] FLETT A S, HASLETON J, COOK C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance[J]. JACC: Cardiovascular Imaging, 2011, 4(2):150-156. [18] BERNIER M, JODOIN P M, HUMBERT O, et al. Graph cut-based method for segmenting the left ventricle from MRI or echocardiographic images[J]. Computerized Medical Imaging and Graphics, 2017, 58:1-12. [19] LI Lei, WU Fuping, YANG Guang, et al. Atrial scar quantification via multi-scale CNN in the graph-cuts framework[J]. Medical Image Analysis, 2020, 60:101595. [20] BALAFAR M A. Gaussian mixture model based segmentation methods for brain MRI images[J]. Artificial Intelligence Review, 2014, 41(3):429-439. [21] LIU Jie, ZHUANG Xiahai, WU Lianming, et al. Myocardium segmentation from DE MRI using multicomponent gaussian mixture model and coupled level set[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(11):2650-2661. [22] DONG Suyu, LUO Gongning, WANG Kuanquan, et al. A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography[J]. BioMed Research International, 2018, 2018:1-16. [23] CHARTSIAS A, JOYCE T, PAPANASTASIOU G, et al. Factorised spatial representation learning: application in semi-supervised myocardial segmentation[M] //FRANGI A F, SCHNABEL J A, DAVATZIKOS C, et al. Medical Image Computing and Computer Assisted Intervention-MICCAI 2018: 11071. Cham: Springer, 2018:490-498. [24] ZHANG D, ICKE I, DOGDAS B, et al. A multi-level convolutional LSTM model for the segmentation of left ventricle myocardium in infarcted porcine cine MR images[C] //2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018). Washington: IEEE, 2018:470-473. [25] DU Xiuquan, SONG Yuhui, LIU Yueguo, et al. An integrated deep learning framework for joint segmentation of blood pool and myocardium[J]. Medical Image Analysis, 2020, 62:101685. [26] XIE Liping, SONG Yi, CHEN Qiang. Automatic left ventricle segmentation in short-axis MRI using deep convolutional neural networks and central-line guided level set approach[J]. Computers in Biology and Medicine, 2020, 122:103877. [27] TRAGAKIS A, KAUL C, MURRAY-SMITH R, et al. The fully convolutional transformer for medical image segmentation[C] //2023 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa: IEEE, 2023:3649-3658. [28] KATO S, HOTTA K. Adaptive t-vMF dice loss: an effective expansion of dice loss for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 168:107695. [29] LI Chunming, HUANG Rui, DING Zhaohua, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7):2007-2016. [30] LIU Y, CAPTUR G, MOON J C, et al. Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI[J]. Magnetic Resonance Imaging, 2016, 34(5):699-706. [31] WIJNTJES M W A, SATO A, HAYWARD V, et al. Local surface orientation dominates haptic curvature discrimination[J]. IEEE Transactions on Haptics, 2009, 2(2):94-102. [32] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11):2514-2525. [33] HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863. [34] ISENSEE F, JAEGER P F, FULL P M, et al. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: Vol. 10663. Cham: Springer, 2018:120-129. [35] KHENED M, ALEX V, KRISHNAMURTHI G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:140-151. [36] ZOTTI C, LUO Z, LALANDE A, et al. Convolutional neural network with shape prior applied to cardiac MRI segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(3):1119-1128. [37] BAUMGARTNER C F, KOCH L M, POLLEFEYS M, et al. An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:111-119. [38] WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Automatic segmentation and disease classification using cardiac cine MR images[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:101-110. [39] PAINCHAUD N, SKANDARANI Y, JUDGE T, et al. Cardiac segmentation with strong anatomical guarantees[J]. IEEE Transactions on Medical Imaging, 2020, 39(11):3703-3713. [40] ROHÉ M M, SERMESANT M, PENNEC X. Automatic multi-atlas segmentation of myocardium with SVF-net[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:170-177. [41] PATRAVALI J, JAIN S, CHILAMKURTHY S. 2D-3D fully convolutional neural networks for cardiac MR segmentation[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:130-139. [42] GRINIAS E, TZIRITAS G. Fast fully-automatic cardiac segmentation in MRI using MRF model optimization, substructures tracking and B-spline smoothing[M] //POP M, SERMESANT M, JODOIN P M, at al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:91-100. [43] YANG Xin, BIAN Cheng, YU Lequan, et al. Class-balanced deep neural network for automatic ventricular structure segmentation[M] //POP M, SERMESANT M, JODOIN P M, et al. Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges. Cham: Springer, 2018:152-160. [44] LI C, XU C, KONWAR K M, et al. Fast distance preserving level set evolution for medical image segmentation[C] //2006 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006:1-7. [45] GUO F, NG M, GOUBRAN M, et al. Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: a continuous kernel cut approach[J]. Medical Image Analysis, 2020, 61:101636. [46] MA Dongdong, LIAO Qingmin, CHEN Ziqin, et al. Adaptive local-fitting-based active contour model for medical image segmentation[J]. Signal Processing: Image Communication, 2019, 76:201-213. [47] RAHMAN M M, MARCULESCU R. Multi-scale hierarchical vision transformer with cascaded attention decoding for medical image segmentation[EB/OL].(2023-03-29)[2024-08-26]. https://doi.org/10.48550/arXiv.2303.16892. [48] RAHMAN M M, MARCULESCU R. G-CASCADE: efficient cascaded graph convolutional decoding for 2D medical image segmentation[C] //2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa: IEEE, 2024:7713-7722. [49] ZHOU Hong-Yu, GUO Jiansen, ZHANG Yinghao, et al. nnFormer: volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32:4036-4045. |
[1] | Xia LIANG,Jie GUO. A method of online teaching platform selection based on online reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(9): 108-118. |
[2] | Chao LI,Wei LIAO. Chinese disease text classification model driven by medical knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 122-130. |
[3] | Jie JI,Chengjie SUN,Lili SHAN,Boyue SHANG,Lei LIN. A prompt learning approach for telecom network fraud case classification [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 113-121. |
[4] | Qi LUO,Gang GOU. Multimodal conversation emotion recognition based on clustering and group normalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 105-112. |
[5] | Fengxu ZHAO,Jian WANG,Yuan LIN,Hongfei LIN. Probability distribution optimization model for learning to rank [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 95-104. |
[6] | Xingyu HUANG,Mingyu ZHAO,Ziyu LYU. Category-wise knowledge probers for representation learning of graph neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 85-94. |
[7] | Liang GUI,Yao XU,Shizhu HE,Yuanzhe ZHANG,Kang LIU,Jun ZHAO. Factual error detection in knowledge graphs based on dynamic neighbor selection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 76-84. |
[8] | Ning XIAN,Yixing FAN,Tao LIAN,Jiafeng GUO. Noise network alignment method integrating multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 64-75. |
[9] | Chengjie SUN,Zongwei LI,Lili SHAN,Lei LIN. A document-level event extraction method based on core arguments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 53-63. |
[10] | Peiyu LIU,Bowen YAO,Zefeng GAO,Wayne Xin ZHAO. Matrix product operator based sequential recommendation model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 44-52, 104. |
[11] | Wei SHAO,Gaoyu ZHU,Lei YU,Jiafeng GUO. Dimensionality reduction and retrieval algorithms for high dimensional data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 27-43. |
[12] | Jiyuan YANG,Muyang MA,Pengjie REN,Zhumin CHEN,Zhaochun REN,Xin XIN,Fei CAI,Jun MA. Research on self-supervised pre-training for recommender systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 1-26. |
[13] | Haisu CHEN,Jiachun LIAO,Sicheng YAO. Identification and statistical analysis methods of personal information disclosure in open government data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 95-106. |
[14] | Xin WEN,Deyu LI. The ML-KNN method based on attribute weighting [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 107-117. |
[15] | Xueqiang ZENG,Yu SUN,Ye LIU,Zhongying WAN,Jiali ZUO,Mingwen WANG. Emoji embedded representation based on emotion distribution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 81-94. |
|