JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2026, Vol. 61 ›› Issue (1): 76-84.doi: 10.6040/j.issn.1671-9352.5.2025.118

Previous Articles     Next Articles

Precise morphological recognition with zonal micro-direction for termites

ZOU Zheng1, LEI Yusheng1, LIU Shijian2, WANG Dingyi3, QIU Xuewei1, SHI Wenwen2, ZHOU Xiaotong2   

  1. 1. College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, Fujian, China;
    2. Fujian Provincial Key Laboratory of Big Data Mining and Applications(Fujian University of Technology), Fuzhou 350118, Fujian, China;
    3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
  • Published:2026-01-15

Abstract: The partition-based approach is used in the paper to refine the target by indirectly enhancing the salience of morphological differences. Rotational moment-based representation is provided more directional information, and a multi-layer local spatial perception module is incorporated to directly associate direction with features. Furthermore, a dual-branch spatial pyramid module is introduced to enhance the reuse of shallow features and improve computational efficiency. In our experiments, the rotational object detection method, the key point detection method, and the proposed method are compared, and it is demonstrated that our method achieves better accuracy and robustness in extracting the direction and position of small targets under higher interference.

Key words: measurement of termite morphology, oriented object detection, key point detection, species identification, automatic morphology recognition

CLC Number: 

  • TP391
[1] 黄复生,朱世模,平正明,等. 中国动物志(昆虫纲)[M]. 北京:科学出版社,2000:1-961. HUANG Fusheng, ZHU Shimo, PING Zhengming, et al. Fauna sinica(insecta)[M]. Beijing: Science Press, 2000:1-961.
[2] 白明,杨星科. 三维几何形态学概述及其在昆虫学中的应用[J]. 昆虫学报,2014,57(9):1105-1111. BAI Ming, YANG Xingke. A review of three-dimensional(3D)geo-metric morphometrics and its application in entomology[J]. Acta Entomologica Sinica, 2014, 57(9):1105-1111.
[3] HOANG H N, HAI B H, PHUONG H L, et al. A lightweight keypoint matching framework for insect wing morphometric landmark detection[J]. Ecological Informatics, 2022, 70:101694.
[4] JOÃO P R, WALTER G, ALICE M P. Automatic wing geometric morphometrics classification of honey bee(apis mellifera)subspecies using deep learning for detecting land-marks[J]. Big Data and Cognitive Computing, 2022, 6(3):70-70.
[5] WANG Zejun, ZHANG Shihao, CHEN Lijiao, et al. Microscopic insect pest detection in tea plantations: improved YOLOv8 model based on deep learning[J]. Agriculture, 2024, 14(10):1739.
[6] BERECIARTUA-PÉREZ A, GOMEZ L, PICON A, et al. Insect counting through deep learning-based density maps estimation[J]. Computers and Electronics in Agriculture, 2022, 197:106933.
[7] BUSCHBACHER K, AHRENS D, ESPELAND M, et al. Image-based species identification of wild bees using convolutional neural networks[J]. Ecological Informatics, 2020, 55:101017.
[8] BADGUJAR C M, ARMSTRONG P R, GERKEN A R, et al. Identifying common stored product insects using automated deep learning methods[J]. Journal of Stored Products Research, 2023, 103:102166.
[9] VENEGAS P, CALDERON F, RIOFRÍO D, et al. Automatic ladybird beetle detection using deep-learning models[J]. PLoS One, 2021, 16(6):e0253027.
[10] TETILA E C, MACHADO B B, MENEZES G V, et al. A deep-learning approach for automatic counting of soybean insect pests[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):1837-1841.
[11] 唐灿,唐亮贵,刘波. 图像特征检测与匹配方法研究综述[J]. 南京信息工程大学学报(自然科学版),2020,12(3):261-273. TANG Can, TANG Lianggui, LIU Bo. A survey of image feature detection and matching methods[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2020, 12(3):261-273.
[12] 江铁,朱桂斌,孙奥,等. 特征点提取算法性能分析研究[J]. 科学技术与工程,2012,12(30):7924-7930. JIANG Tie, ZHU Guibin, SUN Ao, et al. Performance analysis of feature point detectors[J]. Science Technology and Engineering, 2012, 12(30):7924-7930.
[13] YANG Jieren, ZHANG xinying, LUO Peng. A summary of feature point detection based on image mosaics[J]. Electronic Test, 2021(6):53-54.
[14] LE V, BEURTON-AIMAR M, ZEMMARI A, et al. Automated land-marking for insects morphometric analysis using deep neural networks[J]. Ecological Informatics, 2020, 60:101175.
[15] GELDENHUYS D S, JOSIAS S, BRINK W, et al. Deep learning approaches to landmark detection in tsetse wing images[J]. PLOS Computational Biology, 2023, 19(6):e1011194.
[16] 安胜彪,娄慧儒,陈书旺,等. 基于深度学习的旋转目标检测方法研究进展[J]. 电子测量技术,2021,44(21):168-17. AN Shengbiao, LOU Huiru, CHEN Shuwang, et al. Research progress of rotating target detection methods based on deep learning[J]. Electronic Measurement Technology, 2021, 44(21):168-178.
[17] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.
[18] 陈天鹏,胡建文. 基于深度学习的遥感图像旋转目标检测研究综述[J]. 计算机应用研究,2024,41(2):329-340. CHEN Tianpeng, HU Jianwen. Overview of oriented object detection based on deep learning in remote sensing[J]. Application Research of Computers, 2024, 41(2):329-340.
[19] LONG Wen, YU Cheng, YI Fang, et al. A comprehensive survey of oriented object detection in remote sensing images[J]. Expert Systems with Applications, 2023, 224:16-26.
[20] 王旭,吴艳霞,张雪,等. 计算机视觉下的旋转目标检测研究综述[J]. 计算机科学,2023,50(8):79-92. WANG Xiu, WU Yanxia, ZHANG Xue, et al. Survey of rotating object detection research in computer vision[J]. Computer Science, 2023, 50(8):79-92.
[21] YUAN Shuai, QIN Hanlin, YAN Xiang, et al. Sctransnet: spatial-channel cross transformer network for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62(10):1-15.
[22] YANG Zhigang, XIA Xiangyu, LIU Yiming, et al. LPST-Det: local-perception-enhanced swin transformer for sar ship detection[J]. Remote Sensing, 2024, 16(3):18.
[23] KONG Tao, SUN Fuchun, LIU Huaping, et al. Foveabox: beyond anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29:7389-7398.
[24] QIAN Wen, YANG Xue, PENG Silong, et al. Learning modulated loss for rotated object detection[EB/OL].(2019-11-09)[2025-08-15]. https://doi.org/10.48550/arXiv.1911.08299.
[25] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 10(99):1-11.
[26] 中华人民共和国海关总署. SN/T 1105-2019大家白蚁检疫鉴定方法[S]. 北京:中华人民共和国海关总署,2019. General Administration of Customs of the Peoples Republic of China. SN/T 1105-2019 Detection and identification of coptotermes curvignathus Holmgren[S]. Beijing: General Administration of Customs of the Peoples Republic of China, 2019.
[27] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2021:13708-13717.
[28] WANG Chenyao, LIAO Hongyuan, WU Yuehua, et al. CSPNET: a new backbone that can enhance learning capability of CNN[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2020:390-404.
[1] Xia LIANG,Jie GUO. A method of online teaching platform selection based on online reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(9): 108-118.
[2] Chao LI,Wei LIAO. Chinese disease text classification model driven by medical knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 122-130.
[3] Jie JI,Chengjie SUN,Lili SHAN,Boyue SHANG,Lei LIN. A prompt learning approach for telecom network fraud case classification [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 113-121.
[4] Qi LUO,Gang GOU. Multimodal conversation emotion recognition based on clustering and group normalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 105-112.
[5] Fengxu ZHAO,Jian WANG,Yuan LIN,Hongfei LIN. Probability distribution optimization model for learning to rank [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 95-104.
[6] Xingyu HUANG,Mingyu ZHAO,Ziyu LYU. Category-wise knowledge probers for representation learning of graph neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 85-94.
[7] Liang GUI,Yao XU,Shizhu HE,Yuanzhe ZHANG,Kang LIU,Jun ZHAO. Factual error detection in knowledge graphs based on dynamic neighbor selection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 76-84.
[8] Ning XIAN,Yixing FAN,Tao LIAN,Jiafeng GUO. Noise network alignment method integrating multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 64-75.
[9] Chengjie SUN,Zongwei LI,Lili SHAN,Lei LIN. A document-level event extraction method based on core arguments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 53-63.
[10] Peiyu LIU,Bowen YAO,Zefeng GAO,Wayne Xin ZHAO. Matrix product operator based sequential recommendation model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 44-52, 104.
[11] Wei SHAO,Gaoyu ZHU,Lei YU,Jiafeng GUO. Dimensionality reduction and retrieval algorithms for high dimensional data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 27-43.
[12] Jiyuan YANG,Muyang MA,Pengjie REN,Zhumin CHEN,Zhaochun REN,Xin XIN,Fei CAI,Jun MA. Research on self-supervised pre-training for recommender systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 1-26.
[13] Haisu CHEN,Jiachun LIAO,Sicheng YAO. Identification and statistical analysis methods of personal information disclosure in open government data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 95-106.
[14] Xin WEN,Deyu LI. The ML-KNN method based on attribute weighting [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 107-117.
[15] Xueqiang ZENG,Yu SUN,Ye LIU,Zhongying WAN,Jiali ZUO,Mingwen WANG. Emoji embedded representation based on emotion distribution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 81-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Da-qian,DU Ning,WANG Wei,ZHAI Wen,WANG Yu-feng,WANG Ren-qing and ZHANG Zhi-guo* . Quantitative analysis of structure and biodiversity of shrub layer and herbage layer under forest community at Kunyu Mountain[J]. J4, 2007, 42(1): 83 -88 .
[2] . Determination of nutrimental constituents and analysis of function for Japanese red pine pollen and Japanese black pine pollen[J]. J4, 2006, 41(1): 130 -132 .
[3] ZENG Weng-fu1, HUANG Tian-qiang1,2, LI Kai1, YU YANG-qiang1, GUO Gong-de1,2. A local linear emedding agorithm based on harmonicmean geodesic kernel[J]. J4, 2010, 45(7): 55 -59 .
[4] SUN Liang-ji,JI Guo-xing . Jordan(α,β)-derivations and generalized Jordan(α,β)-derivations on upper triangular matrix algebras[J]. J4, 2007, 42(10): 100 -105 .
[5] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .
[6] PENG Zhen-hua, XU Yi-hong*, TU Xiang-qiu. Optimality conditions for weakly efficient elements of nearly preinvex set-valued optimizaton#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 41 -44 .
[7] YUAN Hun-ping . Schur factorization and normal matrices factorization of row (column) symmetric matrices[J]. J4, 2007, 42(10): 123 -126 .
[8] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[9] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation[J]. J4, 2007, 42(7): 33 -37 .
[10] WANG Ting-ming,LI Bo-tang . Proof of a class of matrix rank identities[J]. J4, 2007, 42(2): 43 -45 .