JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (03): 88-94.doi: 10.6040/j.issn.1671-9352.0.2014.333

Previous Articles    

On a generalization of strongly α-revesible rings

WEI Jie, DONG Jun   

  1. Department of Basic Courses, Lanzhou Polytechnic College, Lanzhou 730050, Gansu, China
  • Received:2014-07-15 Revised:2014-12-30 Online:2015-03-20 Published:2015-03-13

Abstract: The notions of strongly (M-)α-reflexive rings are introduced which are a general version of strongly α-revesible rings, and investigate their properties. It is show that strongly α-revesible rings are strongly α-reflexive rings, but the converse is not true. And argue about the strongly (M-)α-reflexivity of some kinds of extensions. A number of properties of these versions are established.

Key words: reduce ring, (strongly) α-revesible ring, strongly M-α-reflexive ring, (strongly) α-reflexive ring

CLC Number: 

  • O153.3
[1] BASER M, HONG C Y, KWAK T K. On extended reversible rings[J]. Algebra Colloq, 2009, 16(1):37-48.
[2] ZHAO Liang, ZHU Xiaosheng. Extensions of α-reflexive rings[J]. Asian-European J of Math, 2012, 5(1):301-310.
[3] ZHAO Liang, ZHU Xiaosheng. Extension of strongly α-reversible rings[J]. Bull Iranian Math Soc, 2012, 38(1):275-292.
[4] YANG Gang, DU Ruijuan. Rings over which polynomial rings are semicommutative[J]. Vietnam J of Math, 2009, 37(4):527-535.
[5] HIRANO Y. On annihilator ideals of a polynomial ring over a noncommutative ring[J]. J Pure Appl Algebra, 2002, 168:45-52.
[6] DUSAN J. Properties of Armendariz rings and weak Armendariz rings[J]. Public De Math, 2009, 85(99):131-137.
[7] TAI K K, LEE Y. Reflexive property of rings[J]. Comm Algebra, 2012, 40(4):1576-1594.
[8] LIU Zhongkui. Armendariz rings relative to monoid[J]. Comm Algebra, 2005, 33(3):649-661.
[9] HASHEMI E. Quasi-Armendariz rings relative to a monoid[J]. J Pure Appl Algebra, 2007, 211:374-382.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!