JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (2): 1-8.doi: 10.6040/j.issn.1671-9352.0.2017.574
ZHU Lin
CLC Number:
[1] LUO Xiuhua, ZHANG Pu. Separated monic representation I: Gorenstein-projective modules[J]. J Algebra, 2017, 479:1-34. [2] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras[M] // Techniques of representation theory, Lond Math Soc Students Texts 65. Cambridge: Cambridge University Press, 2006. [3] AUSLANDER M, REITEN I, SMALØ S O. Representation theory of Artin algebras[M] // Cambridge Studies in Adv Math 36. Cambridge: Cambridge University Press, 1995. [4] RINGEL C M. Tame algebras and integral quadratic forms[M] // Lecture Notes in Math:1099. New York: Springer-Verlag, 1984. [5] KUSSIN D, LENZING H, MELTZER H. Nilpotent operators and weighted projective lines[J]. J Reine Angew Math, 2010, 685(6):33-71. [6] KUSSIN D, LENZING H, MELTZER H, Triangle singularities, ADEchains, and weighted projective lines[J]. Adv Math, 2013, 237:194-251. [7] RINGEL C M, SCHMIDMEIER M. Submodules categories of wild representation type[J]. J Pure Appl Algebra, 2006, 205(2):412-422. [8] RINGEL C M, SCHMIDMEIER M. The Auslander-Reiten translation in submodule categories[J]. Trans Amer Math Soc, 2008, 360(2):691-716. [9] RINGEL C M, SCHMIDMEIER M. Invariant subspaces of nilpotent operators I[J]. J Rein Angew Math, 2008, 614:1-52. [10] SIMSON D. Linear representations of partially ordered sets and vector space categories[M]. [S.l] : Gordon and Breach Science Publishers, 1992. [11] SIMSON D. Representation types of the category of subprojective representations of a finite poset over K[t] /(tm) and a solution of a Birkhoff type problem[J]. J Algebra, 2007, 311:1-30. [12] SIMSON D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators[J]. J Algebra, 2015, 424:254-293. [13] XIONG Baolin, ZHANG Pu, ZHANG Yuehui. Auslander-Reiten translations in monomorphism categories[J]. Forum Math, 2014, 26(3):863-912. [14] XIONG Baolin, ZHANG Pu, ZHANG Yuehui. Bimodule monomorphism categories and RSS equivalences via cotilting modules[J]. arXiv: 1710.00314v1 [math.RT]. [15] BIRKHOFF G. Subgroups of abelian groups[J]. Proc Lond Math Soc II, 1934, 38:385-401. [16] EIRIKSSON Ö. From submodule categories to the stable Auslander algebra[J]. J Algebra, 2017, 486:98-118. [17] ZHANG Pu, XIONG Baolin. Separated monic representation II: frobenius subcategories and RSS equivalences[J]. arXiv:1707.04866v1 [math.RT]. [18] LESZCZYNSKI Z. On the representation type of tensor product algebras[J]. Fundamenta Math, 1994, 144:143-161. |
[1] | WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26. |
[2] | CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. |
[3] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[4] | LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. |
[5] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[6] | WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24. |
[7] | SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35. |
[8] | MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. |
[9] | . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17. |
[10] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[11] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[12] | LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23. |
[13] | GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29. |
[14] | WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18. |
[15] | ZHANG Zi-heng, CHU Mao-quan, YIN Xiao-bin. Some properties of GWCN rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 10-16. |
|