JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (10): 12-17.doi: 10.6040/j.issn.1671-9352.0.2017.038

Previous Articles     Next Articles

Gelfand-Krillov dimension of quantized enveloping algebra Uq(An)

  

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-10-12

Abstract: A PBW type algebra Vq(An) is defined such that the quantized enveloping algebra Uq(An) is its homomorphic image. The Gelfand-Kirillov dimension of Uq(An)is obtained by using the Gröbner-Shirshov bases method to the algebra Vq(An).

Key words: quantized enveloping algebra, bner-Shirshov bases, Grö, PBW algebra, Gelfand-Kirillov dimension

CLC Number: 

  • O153.3
[1] BUESE J, GÓMEZ-TORRECILLAS J, VERSCHOREN A. Algorithmic methods in non commutativealgebra:applications to quantum groups[M] //Mathematical modelling: theory and applications, Vol.17.Amsterdam: Kluwer Academic Publishers, 2003.
[2] KRAUSE G R, LENAGAN T H. Growth of algebras and Gelfand-Krillovdimension[M]. Essex:Longman Scientific and Technical, 1985.
[3] JIMBO M. A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation[J].Lett Math Phys, 1986(11): 247-252.
[4] YAMANE H. A PoIncaré-BIrkhoff-Witt theorem for quantized universal enveloping algebras of type An[J].Publ RIMS Kyoto Univ, 1989, 25:503-520.
[5] TORRECILLAS J G. Gelfand-Krillov dimension of multi-filtered algebras[J].Proc Edinburg Math, 1999, 55:155-168.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[11] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[12] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[13] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[14] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
[15] ZHANG Zi-heng, CHU Mao-quan, YIN Xiao-bin. Some properties of GWCN rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!