JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 74-78.doi: 10.6040/j.issn.1671-9352.0.2018.756

Previous Articles    

Ding projective modules over Frobenius extensions

WANG Zhan-ping, ZHANG Rui-jie*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-12-11

Abstract: Ding projective modules over Frobenius extensions and Ding projective dimensions are investigated. Let R⊂A be a separable Frobenius extension, and let M be any left A-module. It is proved that M is a Ding projective left A-module if and only if M is Ding projective left R-module if and only if ARM and HomR(A,M) are Ding projective left A-modules. Some the conclusion on Ding projective Dimensions are obtained.

Key words: Frobenius extensions, Ding projective modules, Ding projective dimensions

CLC Number: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633.
[2] ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University Mathematical Biquarterly, 1993, 10:1-9.
[3] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. J Aust Math Soc, 2009, 86(3):323-338.
[4] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010, 12:61-73.
[5] YANG Gang, LIU Zhongkui, LIANG Li. Ding projective and Ding injective modules[J]. Algebra Colloquium, 2013, 20(4):601-612.
[6] WANG Zhanping, LIU Zhongkui. Strongly Gorenstein at dimension of complexs[J]. Comm Algebra, 2016, 44(4):1390-1410.
[7] KASCH F. Grundlagen einer theorie der Frobeniuserweiterungen[J]. Math Ann, 1954, 127:453-474.
[8] NAKAYAMA T, TSUZUKU T. On Frobenius extensions: I[J]. Najoya Math J, 1960, 17:89-110.
[9] NAKAYAMA T, TSUZUKU T. On Frobenius extensions: II[J]. Nagoya Math J, 1961, 19:127-148.
[10] MORITA K. Adjoint pair of functors and Frobenius extensions[J]. Sc Rep T K D, 1965, 9:40-71.
[11] CHEN Xiaowu. Totally reexive extensions and models[J]. J Algebra, 2013, 376:322-332.
[12] REN Wei. Gorenstein projective and injective dimensions over Frobenius extensions[J]. Comm Algebra, 2018: 1-7.
[13] KADISON L. New examples of Frobenius extensions[M] // University Lecture Series, Vol 14. Providence: Amer Math Soc, 1999.
[14] REN Wei. Gorenstein projective modules and Frobenius extensions[J]. Sci China Math, 2018, 7:1-12.
[1] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[2] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[3] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[4] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[7] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[8] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[9] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[10] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[11] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[14] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
[15] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!