JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (8): 6-12.doi: 10.6040/j.issn.1671-9352.0.2020.025

Previous Articles    

Lie H-pseudoalgebras over triangular Hopf algebras

ZHANG Yong-feng, YANG Shi-lin*   

  1. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Published:2020-07-14

Abstract: The purpose of this paper is to determine Lie H4-pseudoalgebra structures on a free left H4-module L of rank one, where H4 is the Sweedlers Hopf algebra.

Key words: H-pseudoalgebra, Lie H-pseudoalgebra

CLC Number: 

  • O153.3
[1] BEILINSON A, DRINFELD V. Chiral algebras[M]. Rhode Island: American Mathematical Society, 2004.
[2] RETAKH A. Unital associative pseudoalgebras and their representations[J]. Journal of Algebra, 2004, 277:769-805.
[3] BAKALOV B, D'ANDREA A, KAC V. Theory of finite pseudoalgebras[J]. Advances in Mathematics, 2001,162:1-140.
[4] ANDERSON F, FULLER K. Ring and categories of modules[M]. New York: Springer-Verlag, 1973.
[5] KOLESNIKOV P. Associative conformal algebras with finite faithful representation[J]. Advances in Mathematics, 2006, 202:602-637.
[6] KAC V. Vertex algebras for beginners[M]. Rhode Island: American Mathematical Society, 1998.
[7] KOLESNIKOV P. Conformal representations of Leibniz algebras[J]. Siberian Mathematical Journal, 2008, 49(3):429-435.
[8] WU Zhixiang. Graded left symmetric pseudoalgebras[J]. Communications in Algebra, 2015, 43:3869-3897.
[9] WU Zhixiang. Leibniz H-pseudoalgebras[J]. Journal of Algebra, 2015, 437:1-33.
[10] LODAY J, PIRASHVILI T. Universal enveloping algebras of Leibniz algebras and(co)homology[J]. Mathematische Annalen, 1993, 296:139-158.
[11] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: American Mathematical Society, 1993.
[1] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[2] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[3] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[4] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[5] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[11] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[14] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
[15] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!