JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 6-12.doi: 10.6040/j.issn.1671-9352.0.2023.503

Previous Articles    

A note on zero product determined algebras

PAN Shaoze1, SU Shanshan2   

  1. 1. School of Science, Wuxi University, Wuxi 214105, Jiangsu, China;
    2. School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
  • Published:2025-07-25

Abstract: This paper primarily demonstrates that several classes of algebras possess the property of zero Lie product determinacy. Firstly, it provides some equivalent characterizations of zero product determinacy along with an application. Secondly, we prove that the triangular UHF algebras, countable dimensional locally matrix algebra, and algebras consisting of finite rank operators in J -subspace lattices are all zero Lie product determined. Furthermore, the paper explores the preservationof the zero product determinacy property under certain mappings and presents several counterexamples.

Key words: zero product determined algebra, zero Lie product determined algebra, non-self-adjoint algebra

CLC Number: 

  • O177.1
[1] ALAMINOS J, EXTREMERA J, VILLENA R, et al. Characterizing homomorphisms and derivations on C*-algebras[J]. Proc R Soc Edinburg Sect, 2007, 137(1):1-7.
[2] BREŠAR M, ŠEMEL P. On bilinear maps on matrices with applications to commutativity preservers[J]. J Algebra, 2006, 301(2):803-837.
[3] BREŠAR M. Zero product determined algebras[M]. Berlin: Springer, 2021:33-58.
[4] 陈全园. 算子代数的自反性及其上的若干映射的研究[D]. 上海:同济大学,2012. CHEN Quanyuan. A study of reflexivity of operator algebras and several mappings on them[D]. Shanghai: Tongji University, 2012.
[5] SAMEI E. Local properties of the Hochschild cohomology of C*-algebras[J]. J Aust Math Soc, 2008, 84:117-130.
[6] WOGEN W. Some counterexamples in nonselfadjoint algebras[J]. Ann Math, 1987, 126(2):415-427.
[7] MARCOUX L, POPOV A. Abelian, amenable operator algebras are similar to C*-algebras[J]. Duke Math J, 2016, 165(12):2391-2406.
[8] ALAMINOS J, BREŠAR M, EXTREMERA J, et al. Zero Lie product determined Banach algebras II[J]. J Math Anal Appl, 2019, 474:1498-1511.
[9] GHAHRAMANI H, FALLAHI K, KHODAKARAMI W. A note on zero Lie product determined nest algebras as Banach algebras[J]. Wavelet and Linear Algebra, 2021, 8:1-6.
[10] KÖTHE G. Schiefkörper unendlichen Ranges über dem Zentrum[J]. Math Ann, 1931, 105:15-39.
[11] LONGSTAFF W, NATION J, PANAIA O. Abstract reflexive sublattices and completely distributive collapsibility[J]. Bull Austral Math Soc, 1998, 58:245-260.
[12] LONGSTAFF W, PANAIA O. J-subspace lattices and subspace M-bases[J]. Studia Math, 2000, 139:197-212.
[13] LU Fangyan, LI Pengtong. Algebraic isomorphisms and Jordan derivations of J-subspace lattice algebras[J]. Studia Math, 2003, 158:287-301.
[14] CHEN Lin, LU Fangyan. Local maps of JSL algebras[J]. Complex Anal Oper Theory, 2019, 13:1661-1674.
[15] MURATOV M, CHILIN V. Topological algebras of measurable and locally measurable operators[J]. J Math Sci, 2019, 239:654-705.
[16] BAJUK Z, BREŠAR M. Two-sided zero product determined algebras[J]. Linear Algebra Appl, 2022, 643:125-136.
[1] Yongfeng PANG,Ben LI. Numerical radius of operator in Hilbert space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 34-41.
[2] Chen ZHANG,Weiyan YU. The numerical range of the operator P+QP [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 92-98.
[3] FENG-GAO Hui-zi, CAO Xiao-hong. Judgement of a-Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 88-94.
[4] LI Chun-fang, MENG Bin. Some properties of measure frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 99-104.
[5] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[6] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[7] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[8] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[9] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[10] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[11] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[12] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[13] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[14] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[15] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!