山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 85-88.doi: 10.6040/j.issn.1671-9352.0.2015.188
张国威
ZHANG Guo-wei
摘要: 进一步研究了一些复微分方程的整函数解的导数的Julia集的径向分布, 证明了它的径向分布的集合中含有区间并找到了区间长度的下界。
中图分类号:
[1] GOLDBERG A A, OSTROVSKII I V. Value distribution of meromorphic function, Translations of Mathematical Monographs series[M]. Providence: American Mathematical Society, 2008, vol 236. [2] LAINE I. Nevanlinna theory and complex differential equations[M]. Berlin: Walter de Gruyter, 1993. [3] 仪洪勋,杨重骏. 亚纯函数唯一性理论[M]. 北京:科学出版社,2003. YI Hongxun, YANG Chunchung. Uniqueness theory of meromorphic functions[M]. Beijing: Science Press, 2003. [4] BERGWEILER W. Iteration of meromorphic functions[J]. Bulletin of the American Mathematical Society(N S), 1993, 29:151-188. [5] 郑建华. 亚纯函数动力系统[M]. 北京: 清华大学出版社,2006. ZHENG Jianhua. Dynamics of meromorphic functions[M]. Beijing: Tsinghua University Press, 2006. [6] ZHENG Jianhua, WANG Sheng, HUANG Zhigang. Some properties of Fatou and Julia sets of transcendental meromorphic functions[J]. Bulletin of the Australian Mathematical Society, 2002, 66:1-8. [7] BAKER I N. Sets of non-normality in iteration theory[J]. Journal of the London Mathematical Society, 1965, 40:499-502. [8] 乔建永. 整函数迭代的稳定集[J]. 数学学报, 1994, 37(5):702-708. QIAO Jianyong. Stable domains in the iteration of entire functions[J]. Acta Mathematica Sinica, Chinese Series, 1994, 37(5):702-708. [9] QIAO Jianyong. On limiting directions of Julia set[J]. Annales Academiæ Scientiarum Fennicæ Mathematica, 2001, 26:391-399. [10] QIU Ling, WU Shengjian. Radial distributions of Julia sets of meromorphic functions[J]. Journal of the Australian Mathematical Society, 2006, 81(3):363-368. [11] WANG Sheng. On radial distributions of Julia sets of meromorphic functions[J]. Taiwanese Journal of Mathematics, 2007, 11(5):1301-1313. [12] HUANG Zhigang, WANG Jun. On the radial distribution of Julia sets of entire solutions of f (n)+A(z)f=0[J]. Journal of Mathematical Analysis and Applications, 2012, 387:1106-1113. [13] HUANG Zhigang, WANG Jun. On limit directions of Julia sets of entire solutions of linear differential equations[J]. Journal of Mathematical Analysis and Applications, 2014, 409:478-484. [14] 张国威,丁杰,杨连中. 复线性微分方程解的导数的Julia集的径向分布[J]. 中国科学:A辑 数学,2014, 4(6):693-700. ZHANG Guowei, DING Jie, YANG Lianzhong. Radial distribution of Julia sets of derivatives of solutions of complex linear differential equations[J]. Scientia Sinica Mathematica: Series A Mathematica, 2014, 44(6):693-700. [15] MISIUREWICZ M. On iterates of ez[J]. Ergodic Theory Dynamical Systems, 1981, 1:103-106. [16] BAKER I N. The domains of normality of an entire function[J]. Annales Academiæ Scientiarum Fennicæ Series A I Mathematica, 1975, 1:277-283. [17] WANG Shupei. On the sectorial oscillation theory of f ″+Af=0[J]. Annales Academiæ Scientiarum Fennicæ Series A I Mathematica Dissertationes, 1994, 92:293-312. |
[1] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[2] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[3] | 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49. |
[4] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
[5] | 刘兵兵,郝庆一. 一类悲观二层规划问题的一阶必要最优性条件[J]. 山东大学学报(理学版), 2016, 51(3): 44-50. |
[6] | 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62. |
[7] | 孙艳梅. 奇异分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2014, 49(2): 71-75. |
[8] | 彭振华,徐义红*,涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报(理学版), 2014, 49(05): 41-44. |
[9] | 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49. |
[10] | 陈一鸣,孙慧,刘乐春,付小红. Legendre多项式求解变系数的分数阶Fredholm积分微分方程[J]. J4, 2013, 48(6): 80-86. |
[11] | 黎明,徐明瑜. 利用分数阶导数模型研究有记忆的固体材料[J]. J4, 2013, 48(2): 88-92. |
[12] | 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67. |
[13] | 黎明,徐明瑜. 分数阶Bloch方程的解[J]. J4, 2013, 48(1): 56-61. |
[14] | 苏先锋,李晓萌. 关于非线性复代数微分方程组的非亚纯允许解[J]. J4, 2012, 47(8): 39-41. |
[15] | 王磊1,2,郭嗣琮2. 线性生成的分数阶模糊微分方程[J]. J4, 2012, 47(7): 81-84. |
|