山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 38-43.doi: 10.6040/j.issn.1671-9352.0.2017.646
辛银萍1,陶双平2
XIN Yin-ping1, TAO Shuang-ping2
摘要: 借助Marcinkiewicz积分在变指标Lebesgue空间的性质以及变指标Herz型Hardy空间上的原子分解理论,得到了带变量核的Marcinkiewicz积分算子在齐次及非齐次变指标Herz型Hardy空间上的有界性。
中图分类号:
[1] IZUKI M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to waveiet charactization[J]. Analysis Mathematica, 2010, 36(36):33-50. [2] WANG Hongbin,LIU Zongguang. The Herz type Hardy spaces with variable exponent and their application[J]. Taiwannese Journal of Mathematics, 2012, 16(4):1363-1389. [3] KOVÁCIK O, RÁKOSNÍK J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Mathematical Journal, 1991, 41(4):592-618. [4] MUCKENHOUPT B,WHEEDEN R L. Weighted norm inequalities for singualar and fractional integrals[J]. Transactions of the American Mathematical Society, 1971, 161:249-258. [5] NAKAI E, SAWANO Y. Hardy spaces with variable exponents and generalized Campanato spaces[J]. Journal of Functional Analysis, 2012, 262(9):3665-3748. [6] ZYGMUND A. On singular integral with variable kernels[J]. Applicable Analysis,1978, 7(3):221-238. [7] SAKAMOTO M, YABUTA K. Boundedness of marcinkieicz functions[J]. Studia Math, 1999, 135:103-142. [8] DING Yong, LU Shanzhen, SHAO Shuanglin. Integral operators with varlable kernels on weak Hardy spaces[J]. Journal of Mathematical Analysis Applications, 2006, 317(1):127-135. [9] 陶双平, 辛银萍. 带变量核的参数型 Littlewood-Paley算子在Hardy空间上的有界性[J]. 山东大学学报(理学版), 2010, 45(12):49-56. TAO Shuangping, XIN Yinping. Boundedness of Littlewood-Paley operators with variable kernels on Hardy spaces[J].Journal of Shandong University(Natural Science), 2010, 45(12):49-56. [10] 张璞,陈杰诚. 一类带有变量核的积分算子在Herz型Hardy空间的有界性[J]. 数学年刊, 2005, 25A(5):561-570. ZHANG Pu, CHEN Jiecheng. A class of integral operators with variable kernels on the Herz-type hardy spaces[J]. Chinese Annals of Mathematics, 2005, 25A(5):561-570. [11] 陈杰诚, 丁勇, 范大山. 带变量核的Littlewood-Paley算子[J]. 中国科学(A辑), 2006, 36(1):38-51. CHEN Jiecheng, DING Yong, FAN Dashan. Littlewood-Paley operators with variable kernels[J]. Science in China(Series A), 2006, 36(1):38-51. [12] XUE Qingying, YABUTA K. L2-Boundedness of Marcinkiewicz Integrals along surfaces with variable kernels[J]. Sci Math Japonicae, 2006, 63(3):369-382. |
[1] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[2] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[3] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[4] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[5] | 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5. |
[6] | 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87. |
[7] | 周淑娟,刘素英. 线性算子在各向异性加权Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(04): 74-78. |
[8] | 潘亚丽,李昌文. 带变量核的Marcinkiewicz积分交换子在加权弱Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(03): 84-89. |
[9] | 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4. |
[10] | 潘亚丽1, 王信松2. 带变量核分数次Marcinkiewicz积分在Hardy型空间的有界性[J]. J4, 2013, 48(3): 64-72. |
|