山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 30-37.doi: 10.6040/j.issn.1671-9352.0.2017.629
陶双平,高荣
TAO Shuang-ping, GAO Rong
摘要: 利用函数分解方法和A((→overp),q)权不等式等工具, 得到了多线性分数次积分算子和多线性分数次极大算子在加权Morrey空间上的有界性和弱估计。
中图分类号:
[1] CHEN Xi, XUE Qingying. Weighted estimates for a class of multilinear fractional type operators[J]. Journal of Mathematical Analysis and Applications, 2010, 362(2):355-373. [2] MOEN K. Weighted inequalities for multilinear fractional integral operators[J]. Collectanea Mathematica, 2009, 60(2):213-238. [3] PRADOLINI G. Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators[J]. Journal of Mathematical Analysis and Applications, 2010, 367(2):640-656. [4] CAO Mingming, XUE Qingying. Characterization of two-weighted inequalities for multilinear fractional maximal operator[J]. Nonlinear Analysis, 2016, 130:214-228. [5] CAO Mingming, XUE Qingying, YABUTA K. On multilinear fractional strong maximal operator associated with rectangles and multiple weights[J]. Revista Matemática Iberoamericana, 2017, 33(2):555-572. [6] WANG Hua, YI Wentan. Multilinear singular and fractional integral operators on weighted Morrey spaces[J]. Journal of Function Spaces and Applications, 2013, 2013(2):1-11. [7] GRAFAKOS L, KALTON N. Multilinear Calderón-Zygmund operators on Hardy spaces[J]. Collectanea Mathematica, 2001, 52(2):169-179. [8] HU Guoen, MENG Yan. Multilinear Calderón-Zygmund operator on products of Hardy spaces[J]. Acta Mathematica Sinica(English Series), 2012, 28(2):281-294. [9] LI Wenjuan, XUE Qingying, YABUTA K. Maximal operator for multilinear Calderón-Zygmund singular integral operators on weighted Hardy spaces[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):384-392. [10] IIDA T, SATO E, SAWANO Y, et al. Multilinear fractional integrals on Morrey spaces[J]. Acta Mathematica Sinica(English Series), 2012, 28(7):1375-1384. [11] IIDA T, SATO E, SAWANO Y, et al. Sharp bounds for multilinear fractional integral operators on Morrey type spaces[J]. Positivity, 2012, 16(2):339-358. [12] KOMORI Y, SHIRAI S. Weighted Morrey spaces and a singular integral operator[J]. Mathematische Nachrichten, 2009, 282(2):219-231. [13] HU Yue, WANG Yueshan. Multilinear fractional integral operators on generalized weighted Morrey spaces[J]. Journal of Inequalities and Applications, 2014, 2014(1):323. [14] WONO S B, JANNY L. Boundedness of multilinear generalized fractional integral operators in generalized Morrey space[J]. Far East Journal of Mathematical Sciences, 2011, 57(1):91-104. [15] GULIYEV V S, OMAROVA M N. Multilinear singular and fractional integral operators on generalized weighted Morrey spaces[J]. Azerbaijan Journal of Mathematics, 2014, 5(1):104-132. [16] 戴惠萍, 陶双平, 苟银霞. 粗糙核Littlewood-Paley算子在加权Morrey空间上的弱估计[J]. 吉林大学学报(理学版), 2014, 52(5):888-894. DAI Huiping, TAO Shuangping, GOU Yinxia. Weak estimates for Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J]. Journal of Jilin University(Science Edition), 2014, 52(5):888-894. [17] 陶双平, 魏喜梅. 粗糙核Littlewood-Paley算子在加权Morrey空间上的有界性[J]. 兰州大学学报(自然科学版), 2013, 49(3):400-404. TAO Shuangping, WEI Ximei. Boundedness of Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J]. Journal of Lanzhou University(Natural Science), 2013, 49(3):400-404. [18] 赵凯, 董鹏娟, 邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. 山东大学学报(理学版), 2011, 46(12):88-92. ZHAO Kai, DONG Pengjuan, SHAO Shuai. Weighted boundedness of commutators of the fractional integral on the λ-central Morrey spaces[J]. Journal of Shandong University(Natural Science), 2011, 46(12):88-92. [19] GARCÍA-CUERVA J, RUBIO DE FRANCIA J L. Weighted norm inequalities and related topics[M]. Netherlands: Elsevier, 1985. |
[1] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[2] | 盖晓华,郭学军,冯金顺,陈清江,程正兴. 高维小波框架包子空间对空间L2(Rn)的分解[J]. 山东大学学报(理学版), 2018, 53(8): 34-42. |
[3] | 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2018, 53(6): 38-43. |
[4] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[5] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[6] | 孔艺婷,王同科. 代数和对数奇异Fourier积分的最速下降方法[J]. 山东大学学报(理学版), 2017, 52(10): 50-55. |
[7] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[8] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[9] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[10] | 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5. |
[11] | 张伟,付艳玲. 希尔伯特空间上近似对偶g-框架的扰动新结果及特征刻画[J]. 山东大学学报(理学版), 2016, 51(6): 49-56. |
[12] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[13] | 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87. |
[14] | 孙爱文, 王小珊, 束立生. 非倍测度下的 LittlewoodPaley函数g*λ, μ 在广义 Morrey 空间的有界性[J]. J4, 2013, 48(12): 96-99. |
[15] | 耿素丽,赵凯*,张立平. 非双倍测度下的Littlewood-Paley算子的有界性[J]. J4, 2013, 48(10): 78-81. |
|