您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 30-37.doi: 10.6040/j.issn.1671-9352.0.2017.629

• • 上一篇    下一篇

多线性分数次积分和极大算子在Morrey空间上的加权估计

陶双平,高荣   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-12-11 出版日期:2018-06-20 发布日期:2018-06-13
  • 作者简介:陶双平(1964— ), 男, 教授, 研究方向为调和分析及其在色散方程中的应用. E-mail:taosp@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11561062,11661061,11601434)

Estimates of multilinear fractional integrals and maximal operators on weighted Morrey spaces

TAO Shuang-ping, GAO Rong   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-12-11 Online:2018-06-20 Published:2018-06-13

摘要: 利用函数分解方法和A((→overp),q)权不等式等工具, 得到了多线性分数次积分算子和多线性分数次极大算子在加权Morrey空间上的有界性和弱估计。

关键词: 多线性分数次积分, 多线性分数次极大算子, A((→overp), 加权Morrey空间, q)

Abstract: By using the function decompositions and the inequalities of A((→overp),q) weights, the boundedness and weak estimates of the multilinear fractional integrals and multilinear fractional maximal operators are established on the weighted Morrey spaces.

Key words: A((→overp),q) weight, weighted Morrey space, multilinear fractional maximal operator, multilinear fractional integral

中图分类号: 

  • O174.2
[1] CHEN Xi, XUE Qingying. Weighted estimates for a class of multilinear fractional type operators[J]. Journal of Mathematical Analysis and Applications, 2010, 362(2):355-373.
[2] MOEN K. Weighted inequalities for multilinear fractional integral operators[J]. Collectanea Mathematica, 2009, 60(2):213-238.
[3] PRADOLINI G. Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators[J]. Journal of Mathematical Analysis and Applications, 2010, 367(2):640-656.
[4] CAO Mingming, XUE Qingying. Characterization of two-weighted inequalities for multilinear fractional maximal operator[J]. Nonlinear Analysis, 2016, 130:214-228.
[5] CAO Mingming, XUE Qingying, YABUTA K. On multilinear fractional strong maximal operator associated with rectangles and multiple weights[J]. Revista Matemática Iberoamericana, 2017, 33(2):555-572.
[6] WANG Hua, YI Wentan. Multilinear singular and fractional integral operators on weighted Morrey spaces[J]. Journal of Function Spaces and Applications, 2013, 2013(2):1-11.
[7] GRAFAKOS L, KALTON N. Multilinear Calderón-Zygmund operators on Hardy spaces[J]. Collectanea Mathematica, 2001, 52(2):169-179.
[8] HU Guoen, MENG Yan. Multilinear Calderón-Zygmund operator on products of Hardy spaces[J]. Acta Mathematica Sinica(English Series), 2012, 28(2):281-294.
[9] LI Wenjuan, XUE Qingying, YABUTA K. Maximal operator for multilinear Calderón-Zygmund singular integral operators on weighted Hardy spaces[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):384-392.
[10] IIDA T, SATO E, SAWANO Y, et al. Multilinear fractional integrals on Morrey spaces[J]. Acta Mathematica Sinica(English Series), 2012, 28(7):1375-1384.
[11] IIDA T, SATO E, SAWANO Y, et al. Sharp bounds for multilinear fractional integral operators on Morrey type spaces[J]. Positivity, 2012, 16(2):339-358.
[12] KOMORI Y, SHIRAI S. Weighted Morrey spaces and a singular integral operator[J]. Mathematische Nachrichten, 2009, 282(2):219-231.
[13] HU Yue, WANG Yueshan. Multilinear fractional integral operators on generalized weighted Morrey spaces[J]. Journal of Inequalities and Applications, 2014, 2014(1):323.
[14] WONO S B, JANNY L. Boundedness of multilinear generalized fractional integral operators in generalized Morrey space[J]. Far East Journal of Mathematical Sciences, 2011, 57(1):91-104.
[15] GULIYEV V S, OMAROVA M N. Multilinear singular and fractional integral operators on generalized weighted Morrey spaces[J]. Azerbaijan Journal of Mathematics, 2014, 5(1):104-132.
[16] 戴惠萍, 陶双平, 苟银霞. 粗糙核Littlewood-Paley算子在加权Morrey空间上的弱估计[J]. 吉林大学学报(理学版), 2014, 52(5):888-894. DAI Huiping, TAO Shuangping, GOU Yinxia. Weak estimates for Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J]. Journal of Jilin University(Science Edition), 2014, 52(5):888-894.
[17] 陶双平, 魏喜梅. 粗糙核Littlewood-Paley算子在加权Morrey空间上的有界性[J]. 兰州大学学报(自然科学版), 2013, 49(3):400-404. TAO Shuangping, WEI Ximei. Boundedness of Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J]. Journal of Lanzhou University(Natural Science), 2013, 49(3):400-404.
[18] 赵凯, 董鹏娟, 邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. 山东大学学报(理学版), 2011, 46(12):88-92. ZHAO Kai, DONG Pengjuan, SHAO Shuai. Weighted boundedness of commutators of the fractional integral on the λ-central Morrey spaces[J]. Journal of Shandong University(Natural Science), 2011, 46(12):88-92.
[19] GARCÍA-CUERVA J, RUBIO DE FRANCIA J L. Weighted norm inequalities and related topics[M]. Netherlands: Elsevier, 1985.
[1] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[2] 盖晓华,郭学军,冯金顺,陈清江,程正兴. 高维小波框架包子空间对空间L2(Rn)的分解[J]. 山东大学学报(理学版), 2018, 53(8): 34-42.
[3] 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2018, 53(6): 38-43.
[4] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[5] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[6] 孔艺婷,王同科. 代数和对数奇异Fourier积分的最速下降方法[J]. 山东大学学报(理学版), 2017, 52(10): 50-55.
[7] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
[8] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[9] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
[10] 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5.
[11] 张伟,付艳玲. 希尔伯特空间上近似对偶g-框架的扰动新结果及特征刻画[J]. 山东大学学报(理学版), 2016, 51(6): 49-56.
[12] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[13] 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87.
[14] 孙爱文, 王小珊, 束立生. 非倍测度下的 LittlewoodPaley函数g*λ, μ
在广义 Morrey 空间的有界性
[J]. J4, 2013, 48(12): 96-99.
[15] 耿素丽,赵凯*,张立平. 非双倍测度下的Littlewood-Paley算子的有界性[J]. J4, 2013, 48(10): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!