《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 121-126.doi: 10.6040/j.issn.1671-9352.0.2019.670
• • 上一篇
王静,伏升茂
WANG Jing, FU Sheng-mao
摘要: 研究了一类具有恐惧因子且食饵防御机制的捕食者-食饵模型,得到了非负平衡点局部渐近稳定的条件以及 Hopf 分支存在的条件, 并讨论了恐惧因子对种群密度的影响,最后进行了数值模拟。结果表明, 恐惧程度的增加会导致捕食者种群密度的降低, 但对食饵种群密度无直接影响。
中图分类号:
[1] XIAO D, RUAN S. Global dynamics of a ratio-dependent predator-prey system[J]. Journal of Mathematical Biology, 2001, 43(3):268-290. [2] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75. [3] VENTURINO E, PETROVSKII S. Spatiotemporal behavior of a prey-predator system with a group defense for prey[J]. Ecological Complexity, 2013, 14(14):37-47. [4] XU C, YUAN S, ZHANG T. Global dynamics of a predator-prey model with defence mechanism for prey [J]. Applied Mathematics Letters, 2016, 62(2):42-48. [5] TANG X, SONG Y. Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior[J]. Nonlinear Anal Real World Appl, 2015, 24(1):23-35. [6] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Anal Real World Appl, 2012, 13(4):1837-1843. [7] YUAN S, XU C, ZHANG T. Spatial dynamics in a predator-prey model with herd behavior[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2013, 23(3):220-236. [8] ZANETTE L Y, WHITE A F, ALLEN M C, et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334(6061):1398-1401. [9] MLA K, SASMAL S. Population dynamics with multiple Allee effects induced by fear factors:a mathematical study on prey-predator interactions[J]. Applied Mathematical Modelling, 2018, 64(5):1-14. [10] WANG X, ZANETTE L, ZOU X. Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73(5):1-26. [11] HARTMAN P. Ordinary differential equations[J]. Mathematics of Computation, 1982, 20(20):82-122. |
[1] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[2] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[3] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[4] | 张丽娜,吴守妍. 修正的Leslie-Gower捕食者-食饵#br# 扩散模型解的整体性态[J]. 山东大学学报(理学版), 2014, 49(1): 86-91. |
[5] | 陈斯养,刘晓娜. 具有干扰和分段常数变量模型的稳定性及分支[J]. J4, 2012, 47(11): 109-118. |
|