您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 121-126.doi: 10.6040/j.issn.1671-9352.0.2019.670

• • 上一篇    

带防御机制的捕食者-食饵模型中恐惧因子的作用

王静,伏升茂   

  1. 西北师范大学数学与统计学院, 甘肃 730070
  • 发布日期:2020-03-27
  • 作者简介:王静(1993— )女, 硕士研究生, 研究方向为偏微分方程与生物数学. E-mail: MNMYX520@163.com
  • 基金资助:
    国家自然科学基金资助项目(11761063,11361055)

Effect of fear factor on a predator-prey model with defense mechanish

WANG Jing, FU Sheng-mao   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-03-27

摘要: 研究了一类具有恐惧因子且食饵防御机制的捕食者-食饵模型,得到了非负平衡点局部渐近稳定的条件以及 Hopf 分支存在的条件, 并讨论了恐惧因子对种群密度的影响,最后进行了数值模拟。结果表明, 恐惧程度的增加会导致捕食者种群密度的降低, 但对食饵种群密度无直接影响。

关键词: 捕食者-食饵模型, 恐惧因子, Hopf分支, 食饵防御机制

Abstract: A predator-prey model with fear factor and prey defense mechanism is studied. The conditions for the local asymptotic stability of positive equilibrium and the conditions for existence of Hopf bifurcation are obtained, and the effect of fear factor on population density is discussed. Finally, numerical simulation is carried out. As a result, it is shown that the increase of fear degree will lead to the decrease of predator population density, but has no direct effect on the density of prey population.

Key words: predator-prey model, fear factor, hopf bifurction, defense mechanism

中图分类号: 

  • O175.26
[1] XIAO D, RUAN S. Global dynamics of a ratio-dependent predator-prey system[J]. Journal of Mathematical Biology, 2001, 43(3):268-290.
[2] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75.
[3] VENTURINO E, PETROVSKII S. Spatiotemporal behavior of a prey-predator system with a group defense for prey[J]. Ecological Complexity, 2013, 14(14):37-47.
[4] XU C, YUAN S, ZHANG T. Global dynamics of a predator-prey model with defence mechanism for prey [J]. Applied Mathematics Letters, 2016, 62(2):42-48.
[5] TANG X, SONG Y. Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior[J]. Nonlinear Anal Real World Appl, 2015, 24(1):23-35.
[6] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Anal Real World Appl, 2012, 13(4):1837-1843.
[7] YUAN S, XU C, ZHANG T. Spatial dynamics in a predator-prey model with herd behavior[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2013, 23(3):220-236.
[8] ZANETTE L Y, WHITE A F, ALLEN M C, et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334(6061):1398-1401.
[9] MLA K, SASMAL S. Population dynamics with multiple Allee effects induced by fear factors:a mathematical study on prey-predator interactions[J]. Applied Mathematical Modelling, 2018, 64(5):1-14.
[10] WANG X, ZANETTE L, ZOU X. Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73(5):1-26.
[11] HARTMAN P. Ordinary differential equations[J]. Mathematics of Computation, 1982, 20(20):82-122.
[1] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[2] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[3] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[4] 张丽娜,吴守妍. 修正的Leslie-Gower捕食者-食饵#br# 扩散模型解的整体性态[J]. 山东大学学报(理学版), 2014, 49(1): 86-91.
[5] 陈斯养,刘晓娜. 具有干扰和分段常数变量模型的稳定性及分支[J]. J4, 2012, 47(11): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!