《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 88-94.doi: 10.6040/j.issn.1671-9352.0.2019.729
冯高慧子,曹小红*
FENG-GAO Hui-zi, CAO Xiao-hong*
摘要: 令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0<n(T-λI)<∞}。 讨论有界线性算子及其算子函数满足a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。
中图分类号:
[1] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetigist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [2] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. [3] LI Chunguang, ZHU Sen, FENG Youling, et al. Weyls theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4):481-497. [4] CURTO R E, HAN Y M. Weyls theorem for algebraically paranormal operators[J]. Integral Equations and Operator Theory, 2003, 47(3):307-341. [5] AN I, HAN Y. Weyls theorem for algebraically quasi-class a operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10. [6] SHI Weijuan, CAO Xiaohong. Weyls theorem for the square of operator and perturbations[J]. Communications in Contemporary Mathematics, 2015, 17(5):36-46. [7] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. [8] Duggal B P. The Weyl spectrum of p-hyponormal operators[J]. Integral Equations and Operator Theory, 1997, 29(2):197-201. [9] CAO Xiaohong. Analytically class operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803. [10] HARTE R, LEE W Y. Another note on Weyls theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5):2115-2124. [11] RAKOCEVIC V. Operators obeying a-Weyls theorem[J]. Revue Roumaineede Math?matiques Pureset Appliquées, 1989, 34(10):915-919. [12] DJORDJEVIC S V, HAN Y M. Browders theorems and spectral continuity[J]. Glasgow Math, 2000, 42(3):479-486. [13] GOLDBERG S, DAMBROSIO U. Unbounded linear operators[J]. American Mathematical Monthly, 1968, 75(7):805. [14] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1):18-49. [15] CAO Xiaohong, GUO Maozheng, MENG Bin, et al. Weyls spectra and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2003, 288(2):758-767. |
[1] | 姜虎,曹小红. 算子函数的(ω)性质的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 83-87. |
[2] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
|