您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 88-94.doi: 10.6040/j.issn.1671-9352.0.2019.729

• • 上一篇    下一篇

有界线性算子的a-Weyl定理的判定

冯高慧子,曹小红*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:冯高慧子(1995— ), 女, 硕士研究生, 研究方向为算子理论. E-mail:635003220@qq.com*通信作者简介:曹小红(1972— ), 女, 教授, 博士生导师, 研究方向为算子理论. E-mail:xiaohongcao@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11471200)

Judgement of a-Weyls theorem for bounded linear operators

FENG-GAO Hui-zi, CAO Xiao-hong*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Online:2020-10-20 Published:2020-10-07

摘要: 令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0<n(T-λI)<∞}。 讨论有界线性算子及其算子函数满足a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。

关键词: a-Weyl定理, 逼近点谱, 本质逼近点谱

Abstract: Let H be an infinite dimensional separable complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. T∈B(H) satisfies the a-Weyls theorem if σa(T)\σea(T)=πa00(T), where σa(T) and σea(T) denote the approximate point spectrum and essential approximate point spectrum respectively, and πa00(T)={λ∈iso σa(T):0<n(T-λI)<∞}. A new judgement for the a-Weyls theorem for operators and operator functions is given. Also, the spectrum mapping theorem related to spectrum is considered.

Key words: a-Weyls theorem, approximate point spectrum, essential approximate point spectrum

中图分类号: 

  • O177.1
[1] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetigist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392.
[2] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279.
[3] LI Chunguang, ZHU Sen, FENG Youling, et al. Weyls theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4):481-497.
[4] CURTO R E, HAN Y M. Weyls theorem for algebraically paranormal operators[J]. Integral Equations and Operator Theory, 2003, 47(3):307-341.
[5] AN I, HAN Y. Weyls theorem for algebraically quasi-class a operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10.
[6] SHI Weijuan, CAO Xiaohong. Weyls theorem for the square of operator and perturbations[J]. Communications in Contemporary Mathematics, 2015, 17(5):36-46.
[7] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288.
[8] Duggal B P. The Weyl spectrum of p-hyponormal operators[J]. Integral Equations and Operator Theory, 1997, 29(2):197-201.
[9] CAO Xiaohong. Analytically class operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803.
[10] HARTE R, LEE W Y. Another note on Weyls theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5):2115-2124.
[11] RAKOCEVIC V. Operators obeying a-Weyls theorem[J]. Revue Roumaineede Math?matiques Pureset Appliquées, 1989, 34(10):915-919.
[12] DJORDJEVIC S V, HAN Y M. Browders theorems and spectral continuity[J]. Glasgow Math, 2000, 42(3):479-486.
[13] GOLDBERG S, DAMBROSIO U. Unbounded linear operators[J]. American Mathematical Monthly, 1968, 75(7):805.
[14] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1):18-49.
[15] CAO Xiaohong, GUO Maozheng, MENG Bin, et al. Weyls spectra and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2003, 288(2):758-767.
[1] 姜虎,曹小红. 算子函数的(ω)性质的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 83-87.
[2] 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[2] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .
[3] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .
[4] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[5] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[6] . 一种基于驾驶员学习过程的在线估计算法[J]. J4, 2009, 44(7): 83 -88 .
[7] 史爱玲1,马明2*,郑莹2. 齐次泊松响应的客户寿命值及性质[J]. 山东大学学报(理学版), 2014, 49(03): 96 -100 .
[8] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[9] 陈翠. 加权型空间上的n阶微分复合算子[J]. J4, 2013, 48(4): 57 -59 .
[10] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28 -35 .