您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 76-82.doi: 10.6040/j.issn.1671-9352.0.2020.362

• • 上一篇    

mC7的点可区别Ⅰ-全染色和Ⅵ-全染色

杨晗,陈祥恩*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-11-15
  • 作者简介:陈祥恩(1965— ), 男, 教授, 研究方向为图论及其应用. E-mail:chenxe@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11761064)

Vertex-distinguishing Ⅰ-total colorings and vertex-distinguishing Ⅵ-total colorings of mC7

YANG Han, CHEN Xiang-en*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-11-15

摘要: 利用色集合事先分配法及具体的染色给出了mC7的最优点可区别Ⅰ-全染色以及最优点可区别Ⅵ-全染色,进而确定了图mC7的点可区别Ⅰ-全色数及点可区别Ⅵ-全色数。结论表明VDITC猜想和VDVITC猜想对图mC7成立。

关键词: 圈, 不交并, 点可区别Ⅰ-全染色, 点可区别Ⅵ-全染色, 点可区别Ⅰ-全色数, 点可区别Ⅵ- 全色数

Abstract: By using the methods of constructing a matrix which was composed of color sets and empty set as the elements, distributing color sets in advance and coloring explicitly, to give the optimal vertex distinguishing Ⅰ-total colorings and the optimal vertex distinguishing Ⅵ-total colorings of mC7. Thus vertex distinguishing Ⅰ-total chromatic numbers and the vertex distinguishing Ⅵ-total chromatic numbers of mC7 are determined. The results show that the VDITC conjecture and VDVITC conjecture are valid for mC7.

Key words: cycle, disjoint union, vertex-distinguishing Ⅰ-total coloring, vertex-distinguishing Ⅵ-total coloring, vertex-distinguishing Ⅰ-total chromatic number, vertex-distinguishing Ⅵ-total chromatic number

中图分类号: 

  • O157.5
[1] BURRIS A C. Vertex-distinguishing edge-coloring[D]. Memphis: Memphis State University, 1993.
[2] BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-colorings[J]. Journal of Graph Theory, 1997, 26(2):73-82.
[3] HORÑÁK M, SOTÁK R. Observability of complete multipartite graphs with equipotent parts[J]. Ars Combinatoria-Waterloo then Winnipeg-, 1995, 41(6):289-301.
[4] CERNY J, HORNAK M, SOTAK R. Observability of a graph[J]. Mathematica Slovaca, 1996, 46(1):21-31.
[5] BAZGAN C, HARKAT-BENHAMDINE A, LI H, et al. On the vertex-distinguishing proper edge-colorings of graphs[J]. Journal of Combinatorial Theory, Series B, 1999, 75(2):288-301.
[6] BALISTER P N, RIORDAN O M, SCHELP R H. Vertex-distinguishing edge colorings of graphs[J]. Journal of Graph Theory, 2003, 42(2):95-109.
[7] HARARY F, PLANTHOLT M. The point-distinguishing chromatic index[M]. New York: Wiley Inter Science, 1985.
[8] HORNÑÁK M, SOTAK R. The fifth jump of the point-distinguishing chromatic index of Kn,n[J]. Ars Combinatoria-Waterloo then Winnipeg-, 1996, 42:233-242.
[9] HORÑÁK M, SOTÁK R. Localization of jumps of the point-distinguishing chromatic index of Kn,n[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2):243.
[10] HORÑÁK M, SALVI N Z. On the point-distinguishing chromatic index of complete bipartite graphs[J]. Ars Combinatoria-Waterloo then Winnipeg-, 2006, 80:75-85.
[11] Zagaglia Salvi N. On the point-distinguishing chromatic index of Kn,n[J]. Ars Combinatoria, 1988, 25B:93-104.
[12] SALVI N Z. On the value of the point-distinguishing chromatic index of Kn,n[J]. Ars Combinatoria, 1990, 29B:235-244.
[13] ZHANG Zhongfu, QIU Pengxiang, XU Baogen, et al. Vertex-distinguishing total colorings of graphs[J]. Ars Combinatoria, 2008, 87:33-45.
[14] 陈祥恩.图的可区别染色引论[M].北京:中国科学技术出版社, 2015:108-141 CHEN Xiangen. An introduction to the distinguish coloring of graphs[M]. Beijing: Science and Technology of China Press, 2015: 108-141.
[15] CHEN Xiangen, LI Zepeng. Vertex-distinguishing Ⅰ-total colorings of graphs[J]. Utilitas Mathematica, 2014, 95:319-327.
[16] CHEN X E, GAO Y P, YAO B. Not necessarily proper total colourings which are adjacent vertex distinguishing[J]. International Journal of Computer Mathematics, 2013, 90(11):2298-2307.
[17] 陈祥恩, 苗婷婷, 王治文. 两条路的联图的点可区别Ⅰ-全染色[J].山东大学学报(理学版), 2017, 52(4):30-33. CHEN Xiangen, MIAO Tingting, WANG Zhiwen. Vertex-distinguishing Ⅰ-total colorings of the join of two paths[J]. Journal of Shandong University(Natural Science), 2017, 52(4):30-33.
[18] 苗婷婷, 陈祥恩, 王治文. 圈与路的联图的点可区别Ⅰ-全染色和点可区别Ⅵ-全染色[J]. 大连理工大学学报(自然科学版), 2017, 57(4):430-453. MIAO Tingting, CHEN Xiangen, WANG Zhiwen. Vertex-distinguishing Ⅰ-total colorings and vertex-distinguishing Ⅵ-total colorings of join-graph of cycle and path[J]. Journal of Dalian University of Technology, 2017, 57(4):430-453.
[19] 苗婷婷, 陈祥恩, 王治文. Cm∨Cn,Cm∨Wn,Cm∨Fn的点可区别Ⅰ-全染色和点可区别Ⅵ-全染色[J]. 厦门大学学报(自然科学版), 2017, 56(6):870-875. MIAO Tingting, CHEN Xiangen, WANG Zhiwen. Vertex-distinguishing Ⅰ-total colorings and vertex-distinguishing Ⅵ-total colorings of Cm∨Cn,Cm∨Wn,Cm∨Fn[J]. Journal of Xiamen University(Natural Science), 2017, 56(6):870-875.
[20] 辛小青, 陈祥恩. m个点不交的C4的并的点可区别全染色[J]. 山东大学学报(理学版), 2010, 45(10):35-39,44. XIN Xiaoqing, CHEN Xiangen. Vertex distinguishing total chromatic number of mC4[J]. Journal of Shandong University(Natural Science), 2010, 45(10):35-39,44.
[1] 马丽丽,戴迪,李强. δ-Jordan李超三系的构造和交换扩张[J]. 《山东大学学报(理学版)》, 2021, 56(8): 76-80.
[2] 张生桂,陈祥恩. 近完全图的点可区别Ⅰ-全染色及Ⅵ-全染色[J]. 《山东大学学报(理学版)》, 2021, 56(5): 23-25.
[3] 谭香. 一类最大度为6的平面图的全染色[J]. 《山东大学学报(理学版)》, 2021, 56(11): 71-75.
[4] 王笔美,李敬文,顾彦波,邵淑宏. 单圈图的边幻和全标号[J]. 《山东大学学报(理学版)》, 2020, 55(9): 42-50.
[5] 牛蓓,张欣. d-退化图中的点不交3-圈[J]. 《山东大学学报(理学版)》, 2020, 55(9): 51-53.
[6] 马丽丽,李强. δ-李color代数的交换扩张[J]. 《山东大学学报(理学版)》, 2020, 55(8): 38-42.
[7] 陈宏宇,钟斌. 不含相交5-圈的平面图的线性2-荫度[J]. 《山东大学学报(理学版)》, 2020, 55(7): 38-45.
[8] 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22.
[9] 李强,马丽丽,王晓燕,吕莉娇. Hom-Jordan李代数的交换扩张[J]. 《山东大学学报(理学版)》, 2018, 53(12): 4-8.
[10] 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40.
[11] 房启明,张莉. 无4-圈和5-圈的平面图的k-frugal列表染色[J]. 山东大学学报(理学版), 2018, 53(10): 35-41.
[12] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[13] 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41.
[14] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[15] 谭香. 不含6-圈和相邻5-圈的平面图的全染色[J]. 山东大学学报(理学版), 2016, 51(4): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!