《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 92-97.doi: 10.6040/j.issn.1671-9352.0.2021.099
• • 上一篇
卢诗展1,刘媛媛2,程龙生1*
LU Shi-zhan1, LIU Yuan-yuan2, CHENG Long-sheng1*
摘要: 研究了理想遗传不可解空间的一些空间性质,并证明了如果一个理想拓扑空间是理想Alexandroff空间,则理想遗传不可解空间和理想scattered空间是等价的。
中图分类号:
[1] LU Ling, JOANNOPOULOS J D, SOLJACIC M. Topological photonics[J]. Nature Photonics, 2014, 8(11):821-829. [2] KHANIKAEV A B, SHVETS G. Two-dimensional topological photonics[J]. Nature Photonics, 2017, 11(12):763-773. [3] ZHANG Haidong, SHU Lan, LIAO Shilong. Topological structures of interval-valued hesitant fuzzy rough set and its application[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30(2):1029-1043. [4] EGENHOFER M J, FRANZOSA R D. Point-set topological spatial relations[J]. International Journal of Geographical Information System, 1991, 5(2):161-174. [5] RIAZ M, DAVVAZ B, FAKHAR A, et al. Hesitant fuzzy soft topology and its applications to multi-attribute group decision-making[J]. Soft Computing, 2020, 24(21):16269-16289. [6] BHATTACHARYA S, LIKHACHEV M, KUMAR V. Topological constraints in search-based robot path planning[J]. Auton Robot, 2012, 33(3):273-290. [7] JANKOVIC D S, HAMLETT T R. New topologies from old via ideals[J]. The American Mathematical Monthly, 1990, 97(4):295-310. [8] CATALAN G T, PADUA R N, BALDADO Jr. M P. On β-open sets and ideals in topological spaces[J]. European Journal of Pure and Applied Mathematics, 2019, 12(3):893-905. [9] KOAM A N A, IBEDOU I, ABBAS S E. Fuzzy ideal topological spaces[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(6):5919-5928. [10] GANESAN S. Micro ideal generalized closed sets in micro ideal topological spaces[J]. The International Journal of Analytical and Experimental Modal Analysis, 2020, 7(5):1417-1437. [11] CAI Zhangyong, ZHENG Dingwei, LI Zhaowen, et al. I -separability on ideal topological spaces[J]. Journal of Advanced Research in Pure Mathematics, 2011, 3(4):85-91. [12] EKICI E. On I -Alexandroff and I g-Alexandroff ideal topological spaces[J]. Filomat, 2011, 25(4):99-108. [13] MUKHERJEE M N, ROY B, SEN R. On extensions of topological spaces in terms of ideals[J]. Topology and Its Applications, 2007, 154(18):3167-3172. [14] LI Zhaowen, LU Shizhan. On I -scattered space[J]. Bulletin of the Korean Mathematical Society, 2014, 51(3):667-680. [15] HEWITT E. A problem of set-theoretic topology[J]. Duke Mathematical Journal, 1943, 10(2):309-333. [16] PAVLOV O. On resolvability of topological spaces[J]. Topology and Its Applications, 2002, 126(2):37-47. [17] COMFORT W W, MASAVEU O, ZHOU Hao. Resolvability in topology and in topological groups[J]. Annals of the New York Academy of Sciences, 1995, 767(1):17-27. [18] LINDNER S. Resolvability properties of similar topologies[J]. Bulletin of the Australian Mathematical Society, 2015, 1(3):1-8. [19] DONTCHEV J, GANSTER M, ROSE D. Ideal resolvability[J]. Topology and Its Applications, 1999, 93(1):1-16. [20] WAGNER-BOJAKOWSKA E. Resolvability of I-density topology[J]. Zeszyty Naukowe Wyzsz ej Szkoy Informatyki, 2001, 1(1):35-37. [21] 高国士. 拓扑空间论[M]. 北京: 科学出版社, 2008: 7-20. GAO Guoshi. Topological space theory[M]. Beijing: Science Press, 2008: 7-20. [22] HAYASHI E. Topologies defined by local properties[J]. Mathematische Annalen, 1964, 156(3):205-215. [23] LI Zhaowen, LIN Funing. On I -baire spaces[J]. Filomat, 2013, 27(2):301-310. [24] HATIR E, KESKIN A, NOIRI T. A note on strong β-I -sets and strongly β-I -continuous functions[J]. Acta Mathematica Hungarica, 2005, 108(1):87-94. |
[1] | 段景瑶. 剩余格上逻辑度量空间的拓扑性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 9-16. |
[2] | 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48. |
[3] | 高瑞梅,初颖. Weyl构形An-1和Bn之间的构形的自由性[J]. 山东大学学报(理学版), 2018, 53(6): 70-75. |
[4] | 郭洪峰,李瑜斯,孙伟华. 具有点可数弱基及满足开(G)条件的空间有限并的D-性质[J]. 山东大学学报(理学版), 2017, 52(10): 72-76. |
[5] | 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104. |
[6] | 高瑞梅,李喆. 简单相连多边形对应的图构形的特征多项式[J]. 山东大学学报(理学版), 2016, 51(10): 72-77. |
[7] | 卢涛,贺伟. 邻域系统[J]. 山东大学学报(理学版), 2016, 51(6): 65-69. |
[8] | 卢涛,王习娟,贺伟. Topos中偏序对象的上(下)确界[J]. 山东大学学报(理学版), 2016, 51(4): 112-117. |
[9] | 张国芳,杨二光. k-半层空间的函数刻画[J]. 山东大学学报(理学版), 2016, 51(4): 99-103. |
[10] | 杨小飞. 模糊化拓扑空间的刻画[J]. 山东大学学报(理学版), 2016, 51(2): 114-118. |
[11] | 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71. |
[12] | 卢涛, 王习娟, 贺伟. Topos中选择公理的一个等价刻画[J]. 山东大学学报(理学版), 2015, 50(12): 54-57. |
[13] | 高瑞梅, 孙艳. 二次Gröbner基及Orlik-Solomon代数同构[J]. 山东大学学报(理学版), 2015, 50(06): 89-94. |
[14] | 高瑞梅. G2型Shi-Catalan构形的自由性[J]. 山东大学学报(理学版), 2014, 49(12): 66-70. |
[15] | 陆汉川, 李生刚. 刻画可双完备化的区间值模糊拟度量空间[J]. 山东大学学报(理学版), 2014, 49(10): 72-77. |
|