《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 9-16.doi: 10.6040/j.issn.1671-9352.0.2017.645
段景瑶
DUAN Jing-yao
摘要: 首先研究了逻辑度量空间([0,1], ρR)与度量空间(F(X),HR)的关系,其次讨论了[0,1]剩余格上逻辑度量空间中Cauchy-列的收敛性问题,最后在一般剩余格上建立了一致拓扑结构,为我们研究一般剩余格的结构提供了一种新的方法,并为逻辑推理系统的鲁棒性分析奠定了理论基础。
中图分类号:
[1] CAI Kaiyuan. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5):783-750. [2] YING Mingsheng. Perturbation of fuzzy reasoning[J]. IEEE Transactions on Fuzzy Systems, 1999, 7(5):625-629. [3] LI Yongming, LI Dechao. An approach of measure the robustness of fuzzy reasoning[J]. International Journal of Intelligent Systems, 2005, 20(2005):393-413. [4] DAI Songsong, PEI Daowu. Robustness analysis of full implication inference method[J]. International Journal of Approximate Reasoning, 2013, 54(2013):653-666. [5] JIN Jianhua,LI Yongming, LI Chunquan. Robustness of fuzzy reasoniog via logically equivalence measure[J]. Information Sciences, 2007, 177(2007):5103-5117. [6] WANG Guojun, DUAN Jingyao. On robustness of the full implication triple I inference method with respect to finer measurements[J]. International Journal of Approximate Reasoning, 2014, 55(2014):787-796. [7] LIU Huawen, WANG Guojun. Continuity of triple I methods based on several implications[J]. Computer and Mathematics with Applications, 2008, 56(8):2079-2087. [8] DUAN Jingyao, LI Yongming. Robustness analysis of logic metrics on F(X)[J]. International Journal of Approximate Reasoning, 2015, 61(2015):33-42. [9] PAN Haiyu, LI Yongming, CAO Yongzhi. Lattice-valued simulations for quantitative transition systems[J]. International Journal of Approximate Reasoning, 2015, 56(2015):28-42. [10] PAN Haiyu, CAO Yongzhi, ZHANG Min, et al. Simulation for lattice-valued doubly labeled transition systems[J]. International Journal of Approximate Reasoning, 2014, 55(2014):797-811. [11] 王国俊. 数理逻辑引论与归结原理[M].2版. 北京: 科学出版社, 2006. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. 2nd. Beijing: Science Press, 2006. [12] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer Academic Publishers, 2000. [13] LI Yingfang, QIN Keyun, HE Xingxing. Robustness of fuzzy connectives and fuzzy reasoning[J]. Fuzzy Sets and Systems, 2013, 225(2013):93-105. [14] KELLEY J L. General topology[M]. New York: Springer-Verlag, 1975. [15] 周建仁,谢晶晶,吴洪博. 基于剩余格的一类度量空间及性质[J]. 吉林大学学报(理学版),2012,50(5):897-901. ZHOU Jianren, XIE Jingjing, WU Hongbo. A metric structure and its properties based on metric residual lattece[J]. Journal of Jilin Univerdity(Science Edition), 2012, 50(5):897-901. [16] 段景瑶,李永明. 模糊集的逻辑等价相似度[J]. 陕西师范大学学报(自然科学版), 2016,44(1):7-13. DUAN Jingyao, LI Yongming. Similarity degree via logic equivalence of fuzzy sets[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2016, 44(1):7-13. |
[1] | 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16. |
[2] | 李小娟,高强. 次线性期望框架下乘积空间的正则性[J]. 山东大学学报(理学版), 2018, 53(4): 66-75. |
[3] | 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64. |
[4] | 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72. |
[5] | 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52. |
[6] | 王永铎,何健. 相对于理想的环的刻画[J]. 山东大学学报(理学版), 2017, 52(8): 81-84. |
[7] | 常晓璇,纪培胜. Felbin模糊赋范线性空间上一类模糊有界算子[J]. 山东大学学报(理学版), 2017, 52(2): 49-54. |
[8] | 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70. |
[9] | 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110. |
[10] | 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64. |
[11] | 卢涛,王习娟,贺伟. Topos中偏序对象的上(下)确界[J]. 山东大学学报(理学版), 2016, 51(4): 112-117. |
[12] | 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107. |
[13] | 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71. |
[14] | 卢涛, 王习娟, 贺伟. Topos中选择公理的一个等价刻画[J]. 山东大学学报(理学版), 2015, 50(12): 54-57. |
[15] | 孟宪勇, 郭建华, 苏本堂. 3-正则Halin图的完备染色[J]. 山东大学学报(理学版), 2015, 50(12): 127-129. |
|