您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 32-37,46.doi: 10.6040/j.issn.1671-9352.0.2022.665

•   • 上一篇    下一篇

微分Lie-Yamaguti超代数的上同调与形变

腾文(),龙凤山   

  1. 贵州财经大学数学与统计学院, 贵州 贵阳 550025
  • 收稿日期:2022-12-16 出版日期:2024-02-20 发布日期:2024-02-20
  • 作者简介:腾文(1986—),男,讲师,博士,研究方向为代数学及其应用. E-mail: tengwen@mail.gufe.edu.cn
  • 基金资助:
    贵州省科技计划项目(黔科合基础[2018]1020);贵州省高等学校系统建模与数据挖掘重点实验室项目(2023013);贵州省科技厅基金项目(黔科合基础-ZK[2023]一般025)

Cohomology and deformation of differential Lie-Yamaguti superalgebras

Wen TENG(),Fengshan LONG   

  1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, Guizhou, China
  • Received:2022-12-16 Online:2024-02-20 Published:2024-02-20

摘要:

给出微分Lie-Yamaguti超代数的表示和上同调,并根据上同调考虑微分Lie-Yamaguti超代数的线性形变。

关键词: 微分Lie-Yamaguti超代数, 上同调, 线性形变

Abstract:

Firstly, the representation and cohomology of differential Lie-Yamaguti superalgebras are introduced. Then, the linear deformation of differential Lie-Yamaguti superalgebras is considered according to cohomology.

Key words: differential Lie-Yamaguti superalgebra, cohomology, linear deformation

中图分类号: 

  • O152.5
1 KINYON M K , WEINSTEIN A . Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces[J]. American Journal of Mathematics, 2001, 123 (3): 525- 550.
doi: 10.1353/ajm.2001.0017
2 NOMIZU K . Invariant affine connections on homogeneous spaces[J]. American Journal of Mathematics, 1954, 76 (1): 33- 65.
doi: 10.2307/2372398
3 YAMAGUTI K . On the Lie triple system and its generalization[J]. Journal of Science of the Hiroshima University, Series A, 1958, 21 (3): 155- 160.
4 YAMAGUTI K . On cohmology groups of general Lie triple systems[J]. Kumamoto Journal of Science, Series A, 1969, 8 (4): 135- 146.
5 ZOUNGRANA P L . A note on Lie-Yamaguti superalgebras[J]. Far East Journal of Mathematical Sciences, 2016, 100 (1): 1- 18.
6 ZOUNGRANA P L , ISSA A N . On Killing forms and invariant forms of Lie-Yamaguti superalgebras[J]. International Journal of Mathematics and Mathematical Sciences, 2017, 2017 (1): 1- 9.
7 唐鑫鑫, 胡梦如, 徐建国, 等. Lie-Yamaguti超代数的交换扩张[J]. 东北师大学报(自然科学版), 2018, 50 (4): 1- 5.
TANG Xinxin , HU Mengru , XU Jianguo , et al. Abelian extensions of Lie-Yamaguti superalgebras[J]. Journal of Northeast Normal University(Natural Science Edition), 2018, 50 (4): 1- 5.
8 TANG Xinxin , ZHANG Qingcheng , WANG Chunyue . From Leibniz superalgebras to Lie-Yamaguti superalgebras[J]. Journal of Mathematics, 2018, 38 (4): 589- 601.
9 VORONOV T . Higher derived brackets and homotopy algebras[J]. Journal of Pure and Applied Algebra, 2005, 202 (1/2/3): 133- 153.
10 COLL V , GERSTENHABER M , GIAQUINTO A . An explicit deformation formula with noncommuting derivations[M]. Weizmann: Jerusalem, 1989.
11 MAGID A . Lectures on differential Galois theory[M]. Providence, RI: American Mathematical Society, 1994.
12 RACHUNEK J , ŠALOUNOVA D . Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic[J]. Fuzzy Sets and Systems, 2018, 333, 11- 16.
13 LODAY J L . On the operad of associative algebras with derivation[J]. Georgian Mathematical Journal, 2010, 17 (2): 347- 372.
14 TANG R , FRÉGIER Y , SHENG Y H . Cohomologies of a Lie algebra with a derivation and applications[J]. Journal of Algebra, 2019, 534 (3): 65- 99.
15 WU Xueru , MA Yao , CHEN Liangyun . Abelian extensions of Lie triple systems with derivations[J]. Electronic Research Archive, 2022, 30 (3): 1087- 1103.
doi: 10.3934/era.2022058
16 GUO Shuangjian . Central extensions and deformations of Lie triple systems with a derivation[J]. Journal of Mathematical Research with Applications, 2022, 42 (2): 189- 198.
17 ZHAO Xiaodong, CHEN Liangyun. Cohomologies and deformations of Lie superalgebras with superderivations[EB/OL]. (2021-10-27)[2022-12-10].https://www.researchgate.net/publication/355675478.
18 郭双建. 具有导子的 Lie-Yamaguti 代数[J]. 数学学报(中文版), 2023, 66 (3): 547- 556.
19 TENG Wen , YOU Taijie . Derivations and deformations of Lie-Yamaguti color algebras[J]. Journal of Mathematical Research with Applications, 2022, 42 (1): 15- 30.
[1] 刘妍平. 关于对偶对的相对导出范畴[J]. 《山东大学学报(理学版)》, 2022, 57(2): 23-30.
[2] 丁亚洲,王淑娟. W(2)到Kac模的一阶上同调[J]. 《山东大学学报(理学版)》, 2022, 57(12): 71-74.
[3] 腾文,金久林,游泰杰. 李超三系的线性形变与阿贝尔扩张[J]. 《山东大学学报(理学版)》, 2021, 56(4): 14-19.
[4] 谭玲玲,黄云涛,赵体伟. T2-扩张代数的Tate上同调[J]. 《山东大学学报(理学版)》, 2021, 56(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[2] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[3] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .
[4] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[5] 马建玲 . 菱体型消色差相位延迟器的光谱特性分析[J]. J4, 2007, 42(7): 27 -29 .
[6] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[7] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[8] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[9] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[10] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .