您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 78-84.doi: 10.6040/j.issn.1671-9352.0.2023.155

• • 上一篇    

上同调H1,*(A)中基元的注记

齐鑫1,孟蕊2,王玉玉1*   

  1. 1.天津师范大学数学科学学院, 天津 300387;2.华东师范大学数学科学学院, 上海 200241
  • 发布日期:2025-02-14
  • 通讯作者: 王玉玉(1979— ),女,博士,教授,硕士生导师,研究方向为稳定同伦论. E-mail:wdoubleyu@aliyun.com
  • 作者简介:齐鑫(1999— ),女,硕士研究生,研究方向为稳定同伦论. E-mail:951569277@qq.com
  • 基金资助:
    天津市自然科学基金资助项目(19JCYBJC30300);研究生科研创新资助项目(2022KYCX107Y)

A note on the basis in cohomology H1,*(A)

QI Xin1, MENG Rui2, WANG Yuyu1*   

  1. 1. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China;
    2. School of Mathematical Sciences, East China Normal University, Shanghai 200241, China
  • Published:2025-02-14

摘要: 利用May谱序列以及对相应次数和微分的分析证明了乘积元素h1hn(~overδ)p∈Hp+2,t(A)的非平凡性,其中n≥6,奇素数p≥11,t=q[pn+p4+(p-1)p2+(p-1)p+(p-3)]+p-4,q=2(p-1)。

关键词: Adams谱序列, May谱序列, 上同调, May微分, 非平凡性

Abstract: The non-triviality of the product element h1hn(~overδ)p∈Hp+2,t(A)is proved by using May spectral sequence and the analysis of degree and differential, where n≥6, the odd prime p≥11, t=q[pn+p4+(p-1)p2+(p-1)p+(p-3)]+p-4, q=2(p-1).

Key words: Adams spectral sequence, May spectral sequence, cohomology, May differential, non-triviality

中图分类号: 

  • O189.23
[1] ADAMS J F. Stable homotopy and generalised homotogy[M]. Chicago: University of Chicago Press, 1974.
[2] LIULEVICIUS A. The factorizations of cyclic reduced powers by secondary cohomology operations[J]. Proceedings of the National Academy of Sciences, 1960, 46(7):978-981.
[3] WANG Xiangjun, ZHENG Qibing. The convergence of (~overα)nsh0hk[J]. Science China Mathematics, 1998, 41(6):622-628.
[4] ZHAO Hao, LIU Xiugui, JIN Yinglong. A non-trivial product of filitration s+6 in the stable homotopy groups of spheres[J]. Acta Mathmatica Scientia, 2009, 29(2):276-284.
[5] WANG Yuyu, WANG Jianbo. On a new nontrivial element involving the third periodicity γ-family in π*(S)[J]. Journal of Mathematics, 2017, 37(5):898-910.
[6] 王玉玉, 刘艳芳. 球面稳定同伦群中非平凡元素γsξn[J]. 数学学报(中文版), 2018, 61(6):911-924. WANG Yuyu, LIU Yanfang. The nontrivial element γsξn in the stable homotopy groups of spheres[J]. Acta Mathematica Sinica(Chinese Series), 2018, 61(6):911-924.
[7] GU Xing, WANG Xiangjun, WU Jianqiu. The composition of R. Cohens elements and the third periodic elements in stable homotopy groups of spheres[J]. Osaka Journal of Mathematics, 2021, 58(2):367-382.
[8] LIN Jinkun. Third periodicity families in the stable homotopy of spheres[J]. Journal of Geometry and Topology, 2003, 3(3):179-219.
[9] RAVENEL D C. Complex cobordism and stable homotopy groups of spheres[M]. 2nd ed. NewYork: American Mathematical Society Chelsea Publishing, 2004:347.
[10] ZHONG Linan, WANG Yuyu. Detection of a nontrivial product in the stable homotopy groups of spheres[J]. Algebraic & Geometric Topology, 2013, 13(5):3009-3029.
[11] LIN Jinkun. Some new families of filtration five in the stable homotopy of spheres[J]. Acta Mathematica Scientia, 2009, 29(5):1395-1404.
[1] 腾文,龙凤山. 微分Lie-Yamaguti超代数的上同调与形变[J]. 《山东大学学报(理学版)》, 2024, 59(2): 32-37,46.
[2] 刘妍平. 关于对偶对的相对导出范畴[J]. 《山东大学学报(理学版)》, 2022, 57(2): 23-30.
[3] 丁亚洲,王淑娟. W(2)到Kac模的一阶上同调[J]. 《山东大学学报(理学版)》, 2022, 57(12): 71-74.
[4] 谭玲玲,黄云涛,赵体伟. T2-扩张代数的Tate上同调[J]. 《山东大学学报(理学版)》, 2021, 56(1): 1-9.
[5] 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!