您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 73-78.doi: 10.6040/j.issn.1671-9352.0.2023.193

• • 上一篇    下一篇

复微分方程整函数解的Julia集的极限方向

向旭旭,刘建明,王钦,欧阳瑞琦   

  1. 贵州师范大学数学科学学院, 贵州 贵阳 550025
  • 发布日期:2024-12-12
  • 基金资助:
    国家自然科学基金资助项目(12261023;11861023);贵州师范大学学术新苗培养及创新探索专项资助项目(黔科合平台人才[2018]5769-05)

Julia limiting directions of entire solutions of complex differential equations

XIANG Xuxu, LIU Jianming, WANG Qin, OUYANG Ruiqi   

  1. School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Published:2024-12-12

摘要: 利用Phragmén-Lindelöf 指标函数以及完全正规增长整函数的性质研究微分方程f (n)+Pn-1(z)f (n-1)+… +P0(z)f=0和f ″+A(z)f '+B(z)f=0整函数解的Julia集的极限方向,获得方程无穷级整函数解及其导数和原函数的公共Julia集的极限方向集测度的下界估计,其中n≥2, Pj(z)(j=1,2,…,n-1)是整函数, P0(z)、A(z)B(z)为完全正规增长的整函数。

关键词: 复微分方程, Julia 集的极限方向, Phragmén-Lindelö, f 指标函数, 完全正规增长

Abstract: The Julia limiting directions of entire solutions of complex differential equations f (n)+Pn-1(z)f (n-1)+… +P0(z)f=0 and f ″+A(z)f '+B(z)f=0 are studied by using Phragmén-Lindelöf indicator function and the properties of the completely regular growth functions, the lower bound of the measure of the set of common Julia limiting directions of the derivatives and primitives of infinite order entire solutions of the equations mentioned above is obtained, where n≥2, Pj(z)(j=1,2,…,n-1) are entire functions, P0(z), A(z) and B(z) are entire functions of completely regular growth.

Key words: complex differential equation, the limiting direction of Julia set, Phragmén-Lindelö, f indicator function, completely regular growth

中图分类号: 

  • O174.52
[1] LAINE I. Nevanlinna theory and complex differential equations[M]. Berlin: Walter de Gruyter, 1993.
[2] HAYMAN W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964.
[3] 杨乐. 值分布论及其新研究[M]. 北京:科学出版社,1982. YANG Le. Value distribution theory and its new research[M]. Beijing: Science Press, 1982.
[4] YANG Chungchun, YI Hongxun. Uniqueness theory of meromorphic functions[M]. Dordrech: Kluwer Academic Publishers Group, 2003.
[5] 郑建华. 亚纯函数动力系统[M]. 北京:清华大学出版社,2006. ZHENG Jianhua. Dynamic system of meromorphic functions[M]. Beijing: Tsinghua University Press, 2006.
[6] BAKER I N. Sets of non-normality in iteration theory[J]. Journal of London Mathematical Society, 1965, 40:499-502.
[7] QIAO Jianyong. On limiting directions of Julia sets[J]. Annales Academiae Scientiarum Fennicae: Mathmatica, 2001, 26(2):391-399.
[8] ZHENG Jianhua, WANG Sheng, HUANG Zhigang. Some properties of Fatou and Julia sets of transcendental meromorphic functions[J]. Bulletin of the Australian Mathematical Society, 2002, 66(1):1-8.
[9] HUANG Zhigang, WANG Jun. On the radial distribution of Julia sets of entire solutions of f (n)+A(z)f=0[J]. Journal of Mathematical Analysis and Applications, 2012, 387(2):1106-1113.
[10] 龙见仁,吴兴群,陈寒霜.整函数系数复微分方程解的快速增长性[J].贵州师范大学学报(自然科学版),2021, 39(3):8-14. LONG Jianren,WU Xingqun,CHEN Hanshuang.Fast growth of solutions of complex differential equations with entire coefficients[J]. Journal of Guizhou Normal University(Natural Sciences), 2021, 39(3):8-14.
[11] 王钦,龙见仁. 有穷φ级亚纯函数与线性Jackson q-差分方程[J]. 贵州师范大学学报(自然科学版),2024, 42(4):123-128. WANG Qin, LONG Jianren. Finite φ-order of meromorphic functions and linear Jackson q-divided difference equations[J].Journal of Guizhou Normal University(Natural Sciences), 2024, 42(4):123-128.
[12] WANG Jun, YAO Xiao. On Julia limiting directions of meromorphic functions[J]. Israel Journal of Mathematics, 2020, 238(1):405-430.
[13] WANG Jun, YAO Xiao, ZHANG Chengchun. Julia limiting directions of entire solutions of complex differential equations[J]. Acta Mathematica Scientia, 2021, 41(4):1275-1286.
[14] 张国威,丁杰,杨连中. 复线性微分方程解的导数的Julia集的径向分布[J]. 中国科学:数学,2014,44(6):693-700. ZHANG Guowei, DING Jie, YANG Lianzhong. Radial distribution of Julia sets of derivatives of solutions to complex linear differential equations[J]. Scientia Sinica Mathematica, 2014, 44(6):693-700.
[15] WANG Jun, CHEN Zongxuan. Limiting directions of Julia sets of entire solutions to complex differential equations[J]. Acta Mathematica Scientia, 2017, 37(1):97-107.
[16] LEVIN B I. Distribution of zeros of entire functions[M]. Providence: American Mathematical Society, 1964.
[17] RONKIN L I. Functions of completely regular growth[M]. Dordrecht: Kluwer Academic Publishers Group, 1992.
[18] HUANG Zhibo, LUO Minwei, CHEN Zongxuan. The growth of solutions to higher order differential equations with exponential polynomials as its coefficients[J]. Acta Mathematica Scientia, 2023, 43(1):439-449.
[19] GOLDBERG A A, OSTROVSKII I V. Value distribution of meromorphic function[M] //Translations of Mathematical Monographs Series. Providence: Amer Math Soc, 2008: 488.
[20] ZHENG Jianhua. Value distribution of meromorphic functions[M]. Beijing: Springer Science & Business Media, 2011.
[21] HUANG Zhigang, WANG Jun. On the radial distribution of Julia sets of entire solutions of f (n)+A(z)f=0[J]. Journal of Mathematical Analysis and Applications, 2012, 387(2):1106-1113.
[22] BAKER I N. The domains of normality of an entire function[J]. Annales Academiae Scientiarum Fennicae, 1975(1):277-283.
[23] 高仕安,陈宗煊,陈特为. 线性微分方程的复振荡理论[M]. 武汉:华中理工大学出版社, 1998. GAO Shian, CHEN Zongxuan, CHEN Tewei. Theory of complex oscillation of linear differential equation[M]. Wuhan: Huazhong University of Science and Technology Press, 1998.
[1] 李远飞,李丹丹,陈雪姣,石金诚. 一类拟线性瞬态抛物方程组的空间二择性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 1-9.
[2] 李远飞,陈雪姣,石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 《山东大学学报(理学版)》, 2020, 55(12): 1-12.
[3] 张国威. 复微分方程解的导数的Julia集的径向分布[J]. 山东大学学报(理学版), 2016, 51(2): 85-88.
[4] 苏先锋,李晓萌. 关于非线性复代数微分方程组的非亚纯允许解[J]. J4, 2012, 47(8): 39-41.
[5] 徐俊峰. 关于复代数微分方程亚纯解的增长级[J]. J4, 2010, 45(6): 91-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48 -51 .
[2] 戴涛1,席开华2*, 戴家林1, 鲁统超2, 于金彪1, 任永强2, 杨耀忠1, 程爱杰2. 基于毛管数插值的二元驱油藏模拟方法[J]. J4, 2012, 47(8): 55 -59 .
[3] 唐乾,杨飞,黄琪,林果园. 基于TCB子集的访问控制信息安全传递模型[J]. 山东大学学报(理学版), 2016, 51(7): 98 -106 .
[4] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[5] 周建伟1,羊丹平2*. 二维区域Legendre-Galerkin谱方法的后验误差估计[J]. J4, 2011, 46(11): 122 -126 .
[6] 黄雷雷,宋晓秋,卢威. Banach空间上离散时间系统的多项式稳定[J]. 山东大学学报(理学版), 2017, 52(10): 36 -41 .
[7] 温长昆,任海珍. 基于Wiener指数的极值三角链[J]. J4, 2013, 48(2): 53 -56 .
[8] 柳福提1,2,程晓洪2,张淑华3. MgH2的结构与热力学性质的第一性原理研究[J]. J4, 2012, 47(1): 39 -43 .
[9] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114 -120 .
[10] 李佳琪,邓昱洲,刘刚,岳仁亮,杨军,陈运法. 火焰燃烧法在金属氧化物和贵金属负载型催化剂制备中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 1 -13 .