《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 73-78.doi: 10.6040/j.issn.1671-9352.0.2023.193
向旭旭,刘建明,王钦,欧阳瑞琦
XIANG Xuxu, LIU Jianming, WANG Qin, OUYANG Ruiqi
摘要: 利用Phragmén-Lindelöf 指标函数以及完全正规增长整函数的性质研究微分方程f (n)+Pn-1(z)f (n-1)+… +P0(z)f=0和f ″+A(z)f '+B(z)f=0整函数解的Julia集的极限方向,获得方程无穷级整函数解及其导数和原函数的公共Julia集的极限方向集测度的下界估计,其中n≥2, Pj(z)(j=1,2,…,n-1)是整函数, P0(z)、A(z)和B(z)为完全正规增长的整函数。
中图分类号:
[1] LAINE I. Nevanlinna theory and complex differential equations[M]. Berlin: Walter de Gruyter, 1993. [2] HAYMAN W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964. [3] 杨乐. 值分布论及其新研究[M]. 北京:科学出版社,1982. YANG Le. Value distribution theory and its new research[M]. Beijing: Science Press, 1982. [4] YANG Chungchun, YI Hongxun. Uniqueness theory of meromorphic functions[M]. Dordrech: Kluwer Academic Publishers Group, 2003. [5] 郑建华. 亚纯函数动力系统[M]. 北京:清华大学出版社,2006. ZHENG Jianhua. Dynamic system of meromorphic functions[M]. Beijing: Tsinghua University Press, 2006. [6] BAKER I N. Sets of non-normality in iteration theory[J]. Journal of London Mathematical Society, 1965, 40:499-502. [7] QIAO Jianyong. On limiting directions of Julia sets[J]. Annales Academiae Scientiarum Fennicae: Mathmatica, 2001, 26(2):391-399. [8] ZHENG Jianhua, WANG Sheng, HUANG Zhigang. Some properties of Fatou and Julia sets of transcendental meromorphic functions[J]. Bulletin of the Australian Mathematical Society, 2002, 66(1):1-8. [9] HUANG Zhigang, WANG Jun. On the radial distribution of Julia sets of entire solutions of f (n)+A(z)f=0[J]. Journal of Mathematical Analysis and Applications, 2012, 387(2):1106-1113. [10] 龙见仁,吴兴群,陈寒霜.整函数系数复微分方程解的快速增长性[J].贵州师范大学学报(自然科学版),2021, 39(3):8-14. LONG Jianren,WU Xingqun,CHEN Hanshuang.Fast growth of solutions of complex differential equations with entire coefficients[J]. Journal of Guizhou Normal University(Natural Sciences), 2021, 39(3):8-14. [11] 王钦,龙见仁. 有穷φ级亚纯函数与线性Jackson q-差分方程[J]. 贵州师范大学学报(自然科学版),2024, 42(4):123-128. WANG Qin, LONG Jianren. Finite φ-order of meromorphic functions and linear Jackson q-divided difference equations[J].Journal of Guizhou Normal University(Natural Sciences), 2024, 42(4):123-128. [12] WANG Jun, YAO Xiao. On Julia limiting directions of meromorphic functions[J]. Israel Journal of Mathematics, 2020, 238(1):405-430. [13] WANG Jun, YAO Xiao, ZHANG Chengchun. Julia limiting directions of entire solutions of complex differential equations[J]. Acta Mathematica Scientia, 2021, 41(4):1275-1286. [14] 张国威,丁杰,杨连中. 复线性微分方程解的导数的Julia集的径向分布[J]. 中国科学:数学,2014,44(6):693-700. ZHANG Guowei, DING Jie, YANG Lianzhong. Radial distribution of Julia sets of derivatives of solutions to complex linear differential equations[J]. Scientia Sinica Mathematica, 2014, 44(6):693-700. [15] WANG Jun, CHEN Zongxuan. Limiting directions of Julia sets of entire solutions to complex differential equations[J]. Acta Mathematica Scientia, 2017, 37(1):97-107. [16] LEVIN B I. Distribution of zeros of entire functions[M]. Providence: American Mathematical Society, 1964. [17] RONKIN L I. Functions of completely regular growth[M]. Dordrecht: Kluwer Academic Publishers Group, 1992. [18] HUANG Zhibo, LUO Minwei, CHEN Zongxuan. The growth of solutions to higher order differential equations with exponential polynomials as its coefficients[J]. Acta Mathematica Scientia, 2023, 43(1):439-449. [19] GOLDBERG A A, OSTROVSKII I V. Value distribution of meromorphic function[M] //Translations of Mathematical Monographs Series. Providence: Amer Math Soc, 2008: 488. [20] ZHENG Jianhua. Value distribution of meromorphic functions[M]. Beijing: Springer Science & Business Media, 2011. [21] HUANG Zhigang, WANG Jun. On the radial distribution of Julia sets of entire solutions of f (n)+A(z)f=0[J]. Journal of Mathematical Analysis and Applications, 2012, 387(2):1106-1113. [22] BAKER I N. The domains of normality of an entire function[J]. Annales Academiae Scientiarum Fennicae, 1975(1):277-283. [23] 高仕安,陈宗煊,陈特为. 线性微分方程的复振荡理论[M]. 武汉:华中理工大学出版社, 1998. GAO Shian, CHEN Zongxuan, CHEN Tewei. Theory of complex oscillation of linear differential equation[M]. Wuhan: Huazhong University of Science and Technology Press, 1998. |
[1] | 李远飞,李丹丹,陈雪姣,石金诚. 一类拟线性瞬态抛物方程组的空间二择性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 1-9. |
[2] | 李远飞,陈雪姣,石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 《山东大学学报(理学版)》, 2020, 55(12): 1-12. |
[3] | 张国威. 复微分方程解的导数的Julia集的径向分布[J]. 山东大学学报(理学版), 2016, 51(2): 85-88. |
[4] | 苏先锋,李晓萌. 关于非线性复代数微分方程组的非亚纯允许解[J]. J4, 2012, 47(8): 39-41. |
[5] | 徐俊峰. 关于复代数微分方程亚纯解的增长级[J]. J4, 2010, 45(6): 91-93. |
|