您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 79-86.doi: 10.6040/j.issn.1671-9352.0.2023.038

• • 上一篇    下一篇

二阶微分方程三点边值问题定号解的存在性

刘慧娟   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 发布日期:2024-12-12
  • 作者简介:刘慧娟(1999— ),女,硕士研究生,研究方向为常微分方程边值问题. E-mail:HhhLiuhuijuan@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061064)

Existence of one-signed solutions for three-point boundary value problems of second-order differential equations

LIU Huijuan   

  1. School of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Published:2024-12-12

摘要: 研究二阶微分方程三点边值问题{u″+a(t)f(u)=0,t∈[0,1],u(0)=0, u(1)=u(ε)的定号解的存在性,其中ε∈(0,1), a∈C([0,1],(0,∞)), f∈C(R,R)且当s≠0时,sf(s)>0,λ1为线性特征问题u″+λa(t)u=0, u(0)=0, u(1)=u(ε), t∈[0,1]的主特征值。当(λ1)/(f)<1<(λ1)/(f0)或(λ1)/(f0)<1<(λ1)/(f)时,问题至少存在一个正解u(t)和一个负解v(t)。主要结果的证明基于分歧理论。

关键词: 二阶微分方程, 三点边值问题, 格林函数, 分歧理论, 定号解

Abstract: In this paper, we study the existence of one-signed solutions for three-point boundary value problems of nonlinear second-order differential equations{u″+a(t)f(u)=0, t∈[0,1],u(0)=0, u(1)=u(ε)where ε∈(0,1), a∈C([0,1],(0,∞)), f∈C(R,R)with sf(s)>0 for s≠0, λ1 is the principal eigenvalue of the linear eigenvalue problem: u″+λa(t)u=0, u(0)=0, u(1)=u(ε), t∈[0,1]. Assume that either1)/(f)<1<(λ1)/(f0) or 1)/(f0)<1<(λ1)/(f), the problem has at least one positive solution u(t) and one negative solution v(t). The proof of main results is based on bifurcation techniques.

Key words: second-order differential equation, three-point boundary value problem, Greens function, bifurcation technique, one-signed solution

中图分类号: 

  • O175.8
[1] ZHONG Xianci, HUANG Qiongao. Approximate solution of three-point boundary value problems for second-order ordinary differential equations with variable coefficients[J]. Applied Mathematics and Computation, 2014, 247(15):18-29.
[2] HAKL R, TORRES P J, ZAMORA M. Periodic solutions of singular second order differential equations:upper and lower functions[J]. Nonlinear Anal, 2011, 74(18):7078-7093.
[3] MA Ruyun. Positive solutions of a nonlinear three-point boundary-value problem[J]. Electron Journal Differential Equations, 1999, 1998(34):1-8.
[4] MA Ruyun, OREGAN D. Nodal solutions for second-order m-point boundary value problems with nonlinearities across several eigenvalues[J]. Nonlinear Anal, 2006, 64(7):1562-1577.
[5] MA Ruyun, CHEN Ruipeng. Existence of one-signed solutions of nonlinear four-point boundary value problems[J]. Czechoslovak Mathematical Journal, 2012, 62(137):593-612.
[6] CUI Yujun, ZOU Yumei. Existence of solutions for second-order integral boundary value problems[J]. Nonlinear Analysis:Modelling and Control, 2016, 21(6):828-838.
[7] DOGAN A. On the existence of positive solutions for the second-order boundary value problem[J]. Applied Mathematics Letters, 2015, 49:107-112.
[8] ZHOU Youming, XU Yan. Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations[J]. Journal Mathematical Analysis Applications, 2006, 320(2):578-590.
[9] WANG Shengping, TSAI Longyi. Existence results of three-point boundary value problems for second-order ordinary differential equations[J]. Boundary Value Problems, 2011, 901796(2011):18-27.
[10] LI Fuyi, LIANG Zhanping, ZHANG Qi. Existence of solutions to a class of nonlinear second order two-point boundary value problems[J].Journal Mathematical Analysis and Applications, 2005, 312(1):357-373.
[11] LIU Bingmei, LIU Lishan, WU Yonghong. Positive solutions for singular second order three-point boundary value problems[J]. Nonlinear Analysis, 2007, 66(12):2756-2766.
[12] WALTER W. Ordinary differential equations[M]. New York: Springer, 1998:245-303.
[13] 张恭庆,林源渠. 泛函分析讲义[M].北京:北京大学出版社, 1987:18-20. ZHANG Gongqing, LIN Yuanqu. Functional analysis lecture notes[M]. Beijing: Peking University Press, 1987:18-20.
[14] DEIMLING K. Nonlinear functional analysis[M]. Berlin: Springer-Verlag, 1985:226-229.
[15] RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. Journal Functional Analysis, 1971, 7(3):487-513.
[16] 邓宗琦. 常微分方程边值问题和Sturm比较理论引论[M]. 武汉:华中师范大学出版社, 1987:57-61. DENG Zongqi. Introduction to boundary value problems of ordinary differential equations and Sturm comparison theory[M]. Wuhan: Central China Normal University Press, 1987:57-61.
[1] 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53.
[2] 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34.
[3] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[4] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[5] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[6] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[7] 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45.
[8] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[9] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[10] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[11] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[12] 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94.
[13] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[14] 郑春华. 具有时滞的二阶微分方程三点边值问题三个正解的存在性[J]. J4, 2012, 47(12): 109-114.
[15] 沈文国,宋兰安 . 超线性条件下奇异二阶常微分方程三点边值问题正解的存在性[J]. J4, 2007, 42(6): 91-94 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵凯, 徐毅,王永刚. Tb定理的必要条件的一个证明[J]. J4, 2010, 45(6): 94 -98 .
[2] 程丹丹 许春华 印志磊 岳钦艳 王艳. 纳米β-FeOOH对水中Cr(VI)吸附性能的研究[J]. J4, 2010, 45(1): 31 -35 .
[3] 张华伟,王明文,甘丽新 . 基于随机森林的文本分类模型研究[J]. J4, 2006, 41(3): 139 -143 .
[4] 肖玉亮,马帅,吴建良 . 不含4,5,6-圈的平面图的均匀染色[J]. J4, 2008, 43(6): 21 -24 .
[5] 唐亮, 李倩, 许洪波, 易绵竹. 基于多策略过滤的汉日多词短语抽取和对齐[J]. 山东大学学报(理学版), 2015, 50(09): 21 -28 .
[6] 李德舜,颜涛,宗雪梅,苏静,王佳慧,刘自 . 芽孢杆菌(Bacillus sp. No.16A)苎麻脱胶研究[J]. J4, 2006, 41(5): 151 -154 .
[7] 彭浩, 赵丹丹, 韩建民, 鲁剑锋. P2P系统中一种基于TMR优化的信誉评估算法[J]. 山东大学学报(理学版), 2014, 49(09): 97 -102 .
[8] 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6 -12 .
[9] 杨丹丹. 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理[J]. 山东大学学报(理学版), 2018, 53(2): 46 -51 .
[10] 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66 -72 .