《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 79-86.doi: 10.6040/j.issn.1671-9352.0.2023.038
刘慧娟
LIU Huijuan
摘要: 研究二阶微分方程三点边值问题{u″+a(t)f(u)=0,t∈[0,1],u(0)=0, u(1)=u(ε)的定号解的存在性,其中ε∈(0,1), a∈C([0,1],(0,∞)), f∈C(R,R)且当s≠0时,sf(s)>0,λ1为线性特征问题u″+λa(t)u=0, u(0)=0, u(1)=u(ε), t∈[0,1]的主特征值。当(λ1)/(f∞)<1<(λ1)/(f0)或(λ1)/(f0)<1<(λ1)/(f∞)时,问题至少存在一个正解u(t)和一个负解v(t)。主要结果的证明基于分歧理论。
中图分类号:
[1] ZHONG Xianci, HUANG Qiongao. Approximate solution of three-point boundary value problems for second-order ordinary differential equations with variable coefficients[J]. Applied Mathematics and Computation, 2014, 247(15):18-29. [2] HAKL R, TORRES P J, ZAMORA M. Periodic solutions of singular second order differential equations:upper and lower functions[J]. Nonlinear Anal, 2011, 74(18):7078-7093. [3] MA Ruyun. Positive solutions of a nonlinear three-point boundary-value problem[J]. Electron Journal Differential Equations, 1999, 1998(34):1-8. [4] MA Ruyun, OREGAN D. Nodal solutions for second-order m-point boundary value problems with nonlinearities across several eigenvalues[J]. Nonlinear Anal, 2006, 64(7):1562-1577. [5] MA Ruyun, CHEN Ruipeng. Existence of one-signed solutions of nonlinear four-point boundary value problems[J]. Czechoslovak Mathematical Journal, 2012, 62(137):593-612. [6] CUI Yujun, ZOU Yumei. Existence of solutions for second-order integral boundary value problems[J]. Nonlinear Analysis:Modelling and Control, 2016, 21(6):828-838. [7] DOGAN A. On the existence of positive solutions for the second-order boundary value problem[J]. Applied Mathematics Letters, 2015, 49:107-112. [8] ZHOU Youming, XU Yan. Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations[J]. Journal Mathematical Analysis Applications, 2006, 320(2):578-590. [9] WANG Shengping, TSAI Longyi. Existence results of three-point boundary value problems for second-order ordinary differential equations[J]. Boundary Value Problems, 2011, 901796(2011):18-27. [10] LI Fuyi, LIANG Zhanping, ZHANG Qi. Existence of solutions to a class of nonlinear second order two-point boundary value problems[J].Journal Mathematical Analysis and Applications, 2005, 312(1):357-373. [11] LIU Bingmei, LIU Lishan, WU Yonghong. Positive solutions for singular second order three-point boundary value problems[J]. Nonlinear Analysis, 2007, 66(12):2756-2766. [12] WALTER W. Ordinary differential equations[M]. New York: Springer, 1998:245-303. [13] 张恭庆,林源渠. 泛函分析讲义[M].北京:北京大学出版社, 1987:18-20. ZHANG Gongqing, LIN Yuanqu. Functional analysis lecture notes[M]. Beijing: Peking University Press, 1987:18-20. [14] DEIMLING K. Nonlinear functional analysis[M]. Berlin: Springer-Verlag, 1985:226-229. [15] RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. Journal Functional Analysis, 1971, 7(3):487-513. [16] 邓宗琦. 常微分方程边值问题和Sturm比较理论引论[M]. 武汉:华中师范大学出版社, 1987:57-61. DENG Zongqi. Introduction to boundary value problems of ordinary differential equations and Sturm comparison theory[M]. Wuhan: Central China Normal University Press, 1987:57-61. |
[1] | 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53. |
[2] | 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34. |
[3] | 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41. |
[4] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
[5] | 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92. |
[6] | 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120. |
[7] | 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45. |
[8] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[9] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[10] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[11] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[12] | 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94. |
[13] | 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83. |
[14] | 郑春华. 具有时滞的二阶微分方程三点边值问题三个正解的存在性[J]. J4, 2012, 47(12): 109-114. |
[15] | 沈文国,宋兰安 . 超线性条件下奇异二阶常微分方程三点边值问题正解的存在性[J]. J4, 2007, 42(6): 91-94 . |
|