《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 87-95.doi: 10.6040/j.issn.1671-9352.0.2023.074
李星,由守科*
LI Xing, YOU Shouke*
摘要: 本文主要研究了二维等熵无旋拟定常Noble-Abel气体磁流体绕凸拐角的流动。首先,给出了Noble-Abel气体磁流体中心简单波主部的性质。其次,通过构造凸拐角处的中心简单波,证明了超声速来流通过中心稀疏波或者中心压缩波绕过凸拐角, 并分别给出了到达真空和声速的临界角。
中图分类号:
[1] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves[M]. New York: Interscience, 1948. [2] SHENG Wancheng, YOU Shouke. The two-dimensional unsteady supersonic flow around a convex corner[J]. Journal of Hyperbolic Differential Equations, 2018, 15(3):443-461. [3] SHENG Wancheng, YAO Aidi. Centered simple waves for the two-dimensional pseudo-steady isothermal flow around a convex corner[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(5):705-718. [4] CHEN Shuxing, QU Aifang. Interaction of rarefaction waves in jet stream[J]. Journal of Differential Equations, 2010, 248(12):2931-2954. [5] SHENG Wancheng, YOU Shouke. Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow[J]. Journal de Mathématiques Pures et Appliquées, 2018, 114:29-50. [6] LAI Geng, SHENG Wancheng. Two-dimensional pseudosteady flows around a sharp corner[J]. Archive for Rational Mechanics and Analysis, 2021, 241(2):805-884. [7] YAO Aidi, SHENG Wancheng. Two-dimensional pseudo-steady supersonic flow around a sharp corner[J]. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2022, 102(2):e201800270. [8] CHEN Jianjun, YIN Gan, YOU Shouke. Expansion of gas by turning a sharp corner into vacuum for 2-D pseudo-steady compressible magnetohydro dynamics system[J]. Nonlinear Analysis: Real World Applications, 2020, 52:102955. [9] CHEN Jianjun, SHENG Wancheng. Simple waves of the two dimensional compressible Euler equations in magnetohydrodynamics[J]. Applied Mathematics Letters, 2018, 75:24-29. [10] CHEN Jianjun, SHEN Zhimin, YIN Gan. The expansion of a non-ideal gas around a sharp corner for 2-D compressible Euler system[J]. Mathematical Methods in the Applied Sciences, 2023, 46(2):2023-2041. [11] LI Jiequan, ZHANG Tong, ZHENG Yuxi. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations[J]. Communications in Mathematical Physics, 2006, 267(1):1-12. [12] ZAFAR M, SHARMA V D. Expansion of a wedge of non-ideal gas into vacuum[J]. Nonlinear Analysis: Real World Applications, 2016, 31:580-592. [13] LI Jiequan, YANG Zhicheng, ZHENG Yuxi. Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations[J]. Journal of Differential Equations, 2011, 250(2):782-798. [14] CHEN Xiao, ZHENG Yuxi. The interaction of rarefaction waves of the two-dimensional Euler equations[J]. Indiana University Mathematics Journal, 2010, 59(1):231-256. [15] LAI Geng. On the expansion of a wedge of van der Waals gas into a vacuum II[J]. Journal of Differential Equations, 2016, 260(4):3538-3575. |
[1] | 杨帆,郭俐辉. 三元简化色谱方程组的阴影波解[J]. 《山东大学学报(理学版)》, 2024, 59(10): 89-100. |
[2] | 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77. |
[3] | 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61. |
[4] | 杜亚利,汪璇. 带非线性阻尼的非自治Berger方程的时间依赖拉回吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 30-41. |
[5] | 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65. |
[6] | 吴晓霞,马巧珍. 带有强阻尼的波方程在Rn上的时间依赖吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 22-29. |
[7] | 贾艺菲,郭俐辉,白寅松. 相对论Chaplygin气体欧拉方程组的阴影波解[J]. 《山东大学学报(理学版)》, 2022, 57(4): 55-65. |
|