您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 87-95.doi: 10.6040/j.issn.1671-9352.0.2023.074

• • 上一篇    下一篇

二维拟定常磁流体绕凸拐角的流动

李星,由守科*   

  1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830017
  • 发布日期:2024-12-12
  • 通讯作者: 由守科(1982— ),男,讲师,博士,研究方向为偏微分方程及其应用. E-mail:youshouke2008@126.com
  • 基金资助:
    国家自然科学基金资助项目(11961063);新疆维吾尔自治区自然科学基金资助项目(2021D01C003)

Flow of 2-D pseudo-steady magnetofluid around a convex corner

LI Xing, YOU Shouke*   

  1. School of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, Xinjiang, China
  • Published:2024-12-12

摘要: 本文主要研究了二维等熵无旋拟定常Noble-Abel气体磁流体绕凸拐角的流动。首先,给出了Noble-Abel气体磁流体中心简单波主部的性质。其次,通过构造凸拐角处的中心简单波,证明了超声速来流通过中心稀疏波或者中心压缩波绕过凸拐角, 并分别给出了到达真空和声速的临界角。

关键词: Noble-Abel气体, 凸拐角, 中心简单波

Abstract: In this paper, we study the 2-D isentropic irrotational pseudo-steady supersonic flow around a convex corner for Noble-Abel gas magnetofluid. First, the properties of principal part of the centered simple wave for Noble-Abel gas magnetofluid are given. Second, by constructing the centered simple wave near convex corner, it is proved that the supersonic incoming flow can turn the convex corner by a centered rarefaction wave or a centered compression wave. Additionally, the critical angles corresponding to the arriving of vacuum and sonic state are obtained respectively.

Key words: Noble-Abel gas, convex corner, centered simple wave

中图分类号: 

  • O175.27
[1] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves[M]. New York: Interscience, 1948.
[2] SHENG Wancheng, YOU Shouke. The two-dimensional unsteady supersonic flow around a convex corner[J]. Journal of Hyperbolic Differential Equations, 2018, 15(3):443-461.
[3] SHENG Wancheng, YAO Aidi. Centered simple waves for the two-dimensional pseudo-steady isothermal flow around a convex corner[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(5):705-718.
[4] CHEN Shuxing, QU Aifang. Interaction of rarefaction waves in jet stream[J]. Journal of Differential Equations, 2010, 248(12):2931-2954.
[5] SHENG Wancheng, YOU Shouke. Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow[J]. Journal de Mathématiques Pures et Appliquées, 2018, 114:29-50.
[6] LAI Geng, SHENG Wancheng. Two-dimensional pseudosteady flows around a sharp corner[J]. Archive for Rational Mechanics and Analysis, 2021, 241(2):805-884.
[7] YAO Aidi, SHENG Wancheng. Two-dimensional pseudo-steady supersonic flow around a sharp corner[J]. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2022, 102(2):e201800270.
[8] CHEN Jianjun, YIN Gan, YOU Shouke. Expansion of gas by turning a sharp corner into vacuum for 2-D pseudo-steady compressible magnetohydro dynamics system[J]. Nonlinear Analysis: Real World Applications, 2020, 52:102955.
[9] CHEN Jianjun, SHENG Wancheng. Simple waves of the two dimensional compressible Euler equations in magnetohydrodynamics[J]. Applied Mathematics Letters, 2018, 75:24-29.
[10] CHEN Jianjun, SHEN Zhimin, YIN Gan. The expansion of a non-ideal gas around a sharp corner for 2-D compressible Euler system[J]. Mathematical Methods in the Applied Sciences, 2023, 46(2):2023-2041.
[11] LI Jiequan, ZHANG Tong, ZHENG Yuxi. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations[J]. Communications in Mathematical Physics, 2006, 267(1):1-12.
[12] ZAFAR M, SHARMA V D. Expansion of a wedge of non-ideal gas into vacuum[J]. Nonlinear Analysis: Real World Applications, 2016, 31:580-592.
[13] LI Jiequan, YANG Zhicheng, ZHENG Yuxi. Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations[J]. Journal of Differential Equations, 2011, 250(2):782-798.
[14] CHEN Xiao, ZHENG Yuxi. The interaction of rarefaction waves of the two-dimensional Euler equations[J]. Indiana University Mathematics Journal, 2010, 59(1):231-256.
[15] LAI Geng. On the expansion of a wedge of van der Waals gas into a vacuum II[J]. Journal of Differential Equations, 2016, 260(4):3538-3575.
[1] 杨帆,郭俐辉. 三元简化色谱方程组的阴影波解[J]. 《山东大学学报(理学版)》, 2024, 59(10): 89-100.
[2] 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77.
[3] 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61.
[4] 杜亚利,汪璇. 带非线性阻尼的非自治Berger方程的时间依赖拉回吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 30-41.
[5] 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65.
[6] 吴晓霞,马巧珍. 带有强阻尼的波方程在Rn上的时间依赖吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 22-29.
[7] 贾艺菲,郭俐辉,白寅松. 相对论Chaplygin气体欧拉方程组的阴影波解[J]. 《山东大学学报(理学版)》, 2022, 57(4): 55-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[2] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68 -71 .
[3] 胡明娣1,2,折延宏1,王敏3. L3*系统中逻辑度量空间的拓扑性质[J]. J4, 2010, 45(6): 86 -90 .
[4] 张 慧 . 不完全信息下推广的递归偏好[J]. J4, 2006, 41(1): 62 -68 .
[5] 刘战杰1,马儒宁1,邹国平1,钟宝江2,丁军娣3. 一种新的基于区域生长的彩色图像分割算法[J]. J4, 2010, 45(7): 76 -80 .
[6] . pLaplacian边值问题的多重正解[J]. J4, 2009, 44(7): 79 -82 .
[7] . 中国电力市场的多寡头动态离散模型[J]. J4, 2009, 44(5): 91 -96 .
[8] 张继龙,仪洪勋 . 函数导数分担1个公共值的惟一性[J]. J4, 2006, 41(1): 115 -119 .
[9] . 微波辐射应用于麦草浆漂白工艺的研究[J]. J4, 2009, 44(7): 8 -12 .
[10] 钱卫,田敏,李丽莉,肖敏周显升,厉昌坤,董小卫 . 烤烟叶面微生物5种水解酶的产生、温度稳定性及其在烟叶人工陈化中的应用[J]. J4, 2006, 41(5): 155 -160 .