《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 96-101.doi: 10.6040/j.issn.1671-9352.0.2023.003
李存丽
LI Cunli
摘要: 考察二阶半正问题{-u″(t)=λ(f(u(t))+a(t)),t∈(0,1),u(0)=u(1)=0正解的存在性,其中λ是正参数,a∈C([0,1],R), f∈C([0,∞),[0,∞))。f满足超线性增长条件时,证得存在常数 λ*>0,当0<λ<λ*时,问题存在一个正解。主要结果的证明基于锥上的不动点定理。
中图分类号:
[1] ERBE L H, WANG H Y. On the existence of positive solutions of ordinary differential equations[J]. Proceedings of the American Mathematical Society, 1994, 120(3):743-748. [2] WALTER W. Ordinary differential equations[M]. New York: Springer, 1998. [3] LIU Zhaoli, LI Fuyi. Multiple positive solutions of nonlinear two-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 1996, 203(3):610-625. [4] JIANG Daqing. Multiple positive solutions to singular boundary value problems for superlinear second order ODES[J]. Acta Mathematica Scientia, 2002, 22(2):199-206. [5] LI Zhilong. Existence of positive solutions of superlinear second-order Neumann boundary value problem[J]. Nonlinear Analysis, 2010, 72(6):3216-3221. [6] GE Weigao, REN Jingli. New existence theorems of positive solutions for Sturm-Liouville boundary value problems[J]. Applied Mathematics and Computation, 2004, 148(3):631-644. [7] SUN Jianping, LI Wantong, CHENG Suisun. Three positive solutions for second-order Neumann boundary value problems[J]. Applied Mathematics Letters, 2004, 17(9):1079-1084. [8] LI Xiaoyue, JIANG Daqing. Optimal existence theory for single and multiple positive solutions to second order Neumann boundary vaule problems[J]. Indian Journal of Pure and Applied Mathematics, 2004, 35(5):573-586. [9] CHU Jifeng, SUN Yigang, CHEN Hao. Positive solutions of Neumann problems with singularities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(2):1267-1272. [10] 姚庆六. 非线性变系数二阶Neumann边值问题的正解[J]. 山东大学学报(理学版),2007,42(12):10-14,18. YAO Qingliu. Positive solutions of nonlinear second-order Neumann boundary value problems with a variable coefficient[J]. Journal of Shandong University(Natural Science), 2007, 42(12):10-14, 18. [11] DRAME A K, COSTA D G. On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions[J]. Applied Mathematics Letters, 2012, 25(12):2411-2416. [12] ANURADHA V, HAI D D, SHIVAJI R. Existence results for superlinear semipositone BVP’s[J]. Proceedings of the American Mathematical Society, 1996, 124(3):757-763. [13] DHANYA R, MORRIS Q, SHIVAJI R. Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball[J]. Journal of Mathematical Analysis and Applications, 2016, 434(2):1533-1548. [14] BROWN K J, SHIVAJI R. Simple proofs of some results in perturbed bifurcation theory[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1982, 93(1/2):71-82. [15] CASTRO A, SHIVAJI R. Nonnegative solutions for a class of nonpositone problems[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1988, 108(3/4):291-302. [16] LIONS P L. On the existence of positive solutions of semilinear elliptic equations[J]. SIAM Review, 1982, 24(4):441-467. |
[1] | 胡芳芳,胡卫敏,张永. 一类具有Hadamard导数的分数阶微分方程积分边值问题正解的存在唯一性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 53-61. |
[2] | 范建航,吴奎霖. 一类非自治分段双线性系统周期解[J]. 《山东大学学报(理学版)》, 2024, 59(12): 114-121. |
[3] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[4] | 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76. |
[5] | 石轩荣. 一类二阶半正问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 89-96. |
[6] | 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88. |
[7] | 徐晶,高红亮. 带有凸-凹非线性项的平均曲率问题正解的个数[J]. 《山东大学学报(理学版)》, 2023, 58(4): 74-81. |
[8] | 张钰珂,孟新柱. 具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 54-66. |
[9] | 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105. |
[10] | 张纪凤,张伟,韦慧,倪晋波. 带p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100. |
[11] | 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42. |
[12] | 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41. |
[13] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[14] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
[15] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
|