《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 114-121.doi: 10.6040/j.issn.1671-9352.0.2023.202
范建航,吴奎霖*
FAN Jianhang, WU Kuilin*
摘要: 本文考虑一类非自治分段双线性系统周期解的存在性。首先构造一个有界闭区域,使得系统的任何一条与其边界相交的轨线都正向进入该区域的内部,再用Brouwer不动点定理证明系统穿越周期解的存在性,并说明这类周期解的周期与系统强迫项周期之间的关系。
中图分类号:
[1] CAO Q J, WIERCIGROCH M, PAVLOVSKAIA E E, et al. Archetypal oscillator for smooth and discontinuous dynamics[J]. Physical Review E, 2006, 74(4):046218. [2] KUNZE M. Non-smooth dynamical systems[M]. Berlin: Springer-Verlag, 2000. [3] THOMPSON J M T, BOKAIAN A R, GHAFFARI R. Subharmonic resonances and chaotic motions of a bilinear oscillator[J]. IMA Journal of Applied Mathematics, 1983, 31(3):207-234. [4] DEIMLING K, HETZER G, SHEN W X. Almost periodicity enforced by coulomb friction[J]. Advances in Differential Equations, 1996, 1(2):265-281. [5] FEENY B. A nonsmooth coulomb friction oscillator[J]. Physica D: Nonlinear Phenomena, 1992, 59(1/2/3):25-38. [6] CHEN Hebai. Global analysis on the discontinuous limit case of a smooth oscillator[J]. International Journal of Bifurcation and Chaos, 2016, 26(4):1650061. [7] CHEN Hebai. Global bifurcation for a class of planar Filippov systems with symmetry[J]. Qualitative Theory of Dynamical Systems, 2016, 15:349-365. [8] CAO Q J, WIERCIGROCH M, PAVLOVSKAIA E E, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-linear Mechanics, 2008, 43(6):462-473. [9] CHEN Hebai, XIE Jianhua. Harmonic and subharmonic solutions of the SD oscillator[J]. Nonlinear Dynamics, 2016, 84:2477-2486. [10] CHEN Hebai, CAO Zhenbang, LI Denghui, et al. Global analysis on a discontinuous dynamical system[J]. International Journal of Bifurcation and Chaos, 2017, 27(5):1750078. [11] LI Tao, CHEN Xingwu, ZHAO Jianrong. Harmonic solutions of a dry friction system[J]. Nonlinear Analysis: Real World Applications, 2017, 35:30-44. [12] JIANG Fangfang, JI Zhicheng, WANG Yan. Periodic solutions of discontinuous damped duffing equations[J]. Nonlinear Analysis: Real World Applications, 2019, 47:484-495. [13] ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative theory of differential equations[M]. Providence: American Mathematical Society, 1992. [14] CHENG Zhibo, REN Jingli. Harmonic and subharmonic solutions for superlinear damped duffing equation[J]. Nonlinear Analysis: Real World Applications, 2013, 14(2):1155-1170. [15] ZHOU Biliu, CHEN Hebai, XU Huidong, et al. Harmonic solutions for a class of non-autonomous piecewise linear oscillators[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 102:105912. [16] FREIRE E, PONCE E, TORRES F. Canonical discontinuous planar piecewise linear systems[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11(1):181-211. |
[1] | 王琪,贾建文. 具有公众健康教育影响的随机传染病模型的非平凡周期解[J]. 《山东大学学报(理学版)》, 2021, 56(9): 28-34. |
[2] | 赵娇. 一类非线性三阶差分方程正周期解的存在性和多解性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 50-58. |
[3] | 王爱丽. 具有脉冲控制和病毒感染的害虫治理模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 1-8. |
[4] | 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114. |
[5] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[6] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[7] | 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28. |
[8] | 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6. |
[9] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[10] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[11] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[12] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[13] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[14] | 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46. |
[15] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
|