您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 1-8.doi: 10.6040/j.issn.1671-9352.2.2019.319

• •    

具有脉冲控制和病毒感染的害虫治理模型的分支分析

王爱丽   

  1. 宝鸡文理学院 数学与信息科学学院, 陕西 宝鸡 721013
  • 发布日期:2020-07-08
  • 作者简介:王爱丽(1978— ), 女, 教授, 博士, 研究方向为生物数学. E-mail:aily_wang83@163.com
  • 基金资助:
    国家自然科学基金资助项目(11801013);宝鸡文理学院重点科研计划项目(ZK16048)

Transcritical bifurcation for a pest management model with impulse and virus infection

WANG Ai-li   

  1. School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi, China
  • Published:2020-07-08

摘要: 讨论了一类具有状态依赖反馈控制和病毒感染的害虫模型边界周期解的存在性, 得到了边界周期解全局稳定的条件。给出了模型发生跨临界分岔的条件,并通过数值方法分析了杀虫剂功效和单次投放感染害虫比例对实施控制措施的频率影响。 研究结果说明,状态依赖控制措施在一定条件下可转化为周期控制措施;执行控制措施的频率随着单次投放感染害虫比例增大而减小, 但是随着杀虫剂功效增大,该频率可能减小也可能增大。

关键词: 害虫控制, 状态依赖反馈控制, 半动力系统, 周期解, 跨临界分支

Abstract: The existence of a boundary periodic solution is investigated for a pest management model with state-dependent feedback control and virus infection. The condition is derived for the global stability of the boundary periodic solution. It is examined how the transcritical bifurcation occurs for this model. It is addressed the impact of the control intensity, including the pesticide function and the releasing ratio of infected pests, on the frequency implementing the control measures. The main results obtained in this paper show that the state-dependent control policy can be converted into a periodic impulsive one. The frequency implementing control measures diminishes as the releasing ratio of infected pests increases; while it may decrease or increase as the pesticide function increases.

Key words: pest management, state-dependent feedback control, semi-dynamical system, periodic solution, transcritical bifurcation

中图分类号: 

  • O175.7
[1] VAN LENTERN J C. Integrated pest management in protected crops[M] // Integrated pest management. London: Chapman & Hall, 1995: 311-320.
[2] TANG Sanyi, CHEKE R A. State-dependent impulsive models of integrated pest management(IPM)strategies and their dynamics consequences[J]. J Math Biol, 2005, 50:257-292.
[3] TANG Sanyi, PANG Wenhong, CHEKE R A, et al. Global dynamics of a state-dependent feedback control system[J]. Advances in Difference Equations, 2015, 322: DOI 10.1186/s13662-015-0661-x.
[4] TANG Sanyi, LIANG Juhua, XIAO Yanni, et al. Sliding bifurcations of Filippov two stage pest control models with economic thresholds[J]. SIAM J Appl Math, 2012, 72:1061-1080.
[5] LIANG Juhua, TANG Sanyi, CHEKE R A, et al. Models for determining how many natural enemies to release inoculatively in combinations of biological and chemical control with pesticide resistance[J]. J Math Anal Appl, 2015, 422:1479-1503.
[6] PENG H. Wasps deliver deadly virus to crop pests[J]. Virus Res, 2005, 114:80-81.
[7] SASMAL S K, BHOWMICK A R, Al-KHALED K, et al. Interplay of functional responses and weak Allee effect on pest control via viral infection or natural predator: an eco-epidemiological study[J]. Differ Equ Dyn Syst, 2016, 24:21-50.
[8] LIU Bing, LIU Wanbo, TAO Fengmei, et al. A dynamical analysis of a piecewise smooth pest control SI model[J]. Int J Bifurcat Chaos, 2015, 25:1550068.
[9] TANG Sanyi, TANG Biao, WANG Aili, et al. Holling II predator-prey impulsive semi-dynamic model with complex Poincaré map[J]. Nonlinear Dyn, 2015, 81(3):1575-1596.
[10] JIAO Jianjun, CHEN Lansun, CAI Shaohong. Impulsive control strategy of a pest management SI model with nonlinear incidence rate[J]. Appl Math Mode, 2009, 33:555-563.
[11] LI Xiaodi, SONG Shiji, WU Jianhong. Impulsive control of unstable neural networks with unbounded time-varying delays[J]. Sci China Inform Sci, 2018, 61:012203.
[12] LI Xiaodi, CAO Jinde, PERC Matjalž. Switching laws design for stability of finite and infinite delayed switched systems with stable and unstable modes[J]. IEEE Access, 2018, 6:6677-6691.
[13] TANG Biao, XIAO Yanni, TANG Sanyi, et al. A feedback control model of comprehensive therapy for treating immunogenic tumours[J]. Int J Bifurcat Chaos, 2016, 26:1650039.
[14] WANG Aili, XIAO Yanni, SMITH R. Using non-smooth models to determine thresholds for microbial pest management[J]. J Math Biol, 2019, 78(5):1389-1424.
[15] RASBAND S N. Chaotic dynamics of nonlinear systems[M]. New York: Courier Dover Publications, 2015.
[1] 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114.
[2] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[3] 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28.
[4] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[5] 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6.
[6] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[7] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[8] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[9] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[10] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[11] 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46.
[12] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[13] 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74.
[14] 卢拉拉,窦家维. 一类具有比例和常数脉冲收获的周期竞争系统周期解的存在性[J]. J4, 2012, 47(9): 98-104.
[15] 郭莹. 差分方程的伪概周期解[J]. J4, 2012, 47(2): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!