您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 122-129.doi: 10.6040/j.issn.1671-9352.0.2023.064

• • 上一篇    下一篇

定数截尾下步进应力部分加速寿命试验模型的统计推断

龙兵,蒋再富   

  1. 荆楚理工学院数理学院, 湖北 荆门 448000
  • 发布日期:2024-12-12
  • 基金资助:
    湖北省自然科学基金资助项目(2022CFB527);荆楚理工学院科学研究项目(QN202426)

Statistical inference of step-stress partially accelerated life test model under Type-Ⅱ censoring

LONG Bing, JIANG Zaifu   

  1. School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, Hubei, China
  • Published:2024-12-12

摘要: 在步进应力部分加速寿命试验下,基于试验数据分别用经典方法和贝叶斯方法得到分布参数、加速因子及可靠度函数的极大似然估计与贝叶斯估计。根据极大似然估计的渐近性理论构建分布参数和加速因子的近似置信区间。利用观测数据对被截尾单元的失效时刻进行预测,包括最好无偏预测和条件中位数预测。运用蒙特卡洛方法对各种估计量的均值和平均相对误差进行模拟计算,并讨论样本量对估计精度的影响。最后用文中的方法对一个数值例子进行分析。

关键词: 指数分布, 步进应力部分加速寿命试验, 极大似然估计, 贝叶斯估计

Abstract: Under the step-stress partially accelerated life test, based on the test data, the maximum likelihood estimation and Bayesian estimation of the distribution parameter, acceleration factor and reliability function are obtained by the classical method and Bayesian method, respectively. According to the asymptotic theory of maximum likelihood estimation, the approximate confidence intervals of the distribution parameter and the acceleration factor are constructed. The failure times of the censored units are predicted by using the observed data, including the best unbiased predictor and the conditional median predictor. The mean values and average relative errors of various estimators are calculated by Monte-Carlo method, and the influence of sample size on estimation accuracy is discussed. Finally, a numerical example is analyzed using the method presented in the paper.

Key words: exponential distribution, step-stress partially accelerated life test, maximum likelihood estimation, Bayesian estimation

中图分类号: 

  • O213.2
[1] 师义民,师小琳. 竞争失效产品部分加速寿命试验的统计分析[J]. 西北工业大学学报,2017,35(1):109-115. SHI Yimin, SHI Xiaolin. Statistical analysis for partially accelerated life tests with competing causes of failure[J]. Journal of Northwestern Polytechnical University, 2017, 35(1):109-115.
[2] 龙兵,张忠占.恒定应力部分加速寿命试验的统计分析[J]. 应用数学,2019,32(2):302-310. LONG Bing, ZHANG Zhongzhan. Statistical analysis for constant-stress partially accelerated life tests[J]. Mathematica Applicata, 2019, 32(2):302-310.
[3] ISMAIL A A, ABDEL-GHALY A A, EL-KHODARY E H. Optimum constant-stress life test plans for Pareto distribution under Type-Ⅰ censoring[J]. Journal of Statistical Computation and Simulation, 2011, 81(12):1835-1845.
[4] NASSAR M, ALAM F M A. Analysis of modified kies exponential distribution with constant stress partially accelerated life tests under Type-Ⅱ censoring[J]. Mathematics, 2022, 10(5):819.
[5] DEY S, WANG L, NASSAR M. Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive Type-Ⅱ censoring[J]. Journal of Applied Statistics, 2022, 49(11):2891-2912.
[6] ALMALKI S J, FARGHAL A W A, RASTOGI M K, et al. Partially constant-stress accelerated life tests model for parameters estimation of Kumaraswamy distribution under adaptive Type-Ⅱ progressive censoring[J]. Alexandria Engineering Journal, 2022, 61(7):5133-5143.
[7] ISMAIL A A. Likelihood inference for a step-stress partially accelerated life test model with Type-Ⅰ progressively hybrid censored data from Weibull distribution[J]. Journal of Statistical Computation and Simulation, 2014, 84(11):2486-2494.
[8] ISMAIL A A. Statistical inference for a step-stress partially-accelerated life test model with an adaptive Type-Ⅰ progressively hybrid censored data from Weibull distribution[J]. Statistical Papers, 2016, 57(2):271-301.
[9] ISMAIL A A. Inference for a step-stress partially accelerated life test model with an adaptive Type-Ⅱ progressively hybrid censored data from Weibull distribution[J]. Journal of Computational and Applied Mathematics, 2014, 260:533-542.
[10] ZHANG Chunfang, SHI Yimin, WU Min. Statistical inference for competing risks model in step-stress partially accelerated life tests with progressively Type-Ⅰ hybrid censored Weibull life data[J]. Journal of Computational and Applied Mathematics, 2016, 297:65-74.
[11] ALJOHANI H M, ALFAR N M. Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under Type-Ⅱ censored data[J]. Alexandria Engineering Journal, 2020, 59(3):1171-1180.
[12] ALAM I, AHMED A. Inference on maintenance service policy under step-stress partially accelerated life tests using progressive censoring[J]. Journal of Statistical Computation and Simulation, 2022, 92(4):813-829.
[13] KAMAL M, SIDDIQUI S A, RAHMAN A, et al. Parameter estimation in step stress partially accelerated life testing under different types of censored data[J]. Computational Intelligence and Neuroscience, 2022:3491732.
[14] WANG Liang, SHI Yimin, YAN Weian. Inference for Gompertz distribution under records[J]. Journal of Systems Engineering and Electronics, 2016, 27(1):271-278.
[15] 龙沁怡,徐丽平. 基于上记录值Lomax分布的统计推断[J]. 江西师范大学学报(自然科学版), 2023, 47(2):216-220. LONG Qinyi, XU Liping. Statistical inference for Lomax distribution based on upper record values[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2023, 47(2):216-220.
[16] 邓严林. 双边定数截尾下Topp-Leone分布的Bayes估计与预测[J].江西师范大学学报(自然科学版), 2021,45(3):272-277. DENG Yanlin. The Bayesian estimation and prediction for the Topp-Leone distribution under Type-Ⅱ doubly censored sample[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2021, 45(3):272-277.
[17] 龙兵,张忠占. 双定数混合截尾下两参数Pareto分布的统计分析[J]. 数学物理学报, 2022, 42A(1):269-281. LONG Bing, ZHANG Zhongzhan. Statistical analysis of two-parameter Pareto distribution under double Type-Ⅱ hybrid censoring scheme[J]. Acta Mathematica Scientia, 2022, 42A(1):269-281.
[18] ASL M N, BELAGHI R A, BEVRANI H. Classical and Bayesian inferential approaches using Lomax model under progressively Type-Ⅰ hybrid censoring[J]. Journal of Computational and Applied Mathematics, 2018, 343:397-412.
[1] 王淑影,张亚男,程云飞,周丽芳. 带治愈组右删失数据的模型平均研究[J]. 《山东大学学报(理学版)》, 2024, 59(4): 108-116.
[2] 胡江山,隋云云,付云鹏. 左截断右删失数据中泊松分布的贝叶斯推断[J]. 《山东大学学报(理学版)》, 2021, 56(7): 46-52.
[3] 隋云云,胡江山,马树才,付云鹏. 截断删失数据下线性指数分布的参数估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 10-16.
[4] 赵闯,邓雄,胡林*. 三维受压剪切颗粒体系的力链结构[J]. 山东大学学报(理学版), 2014, 49(05): 20-23.
[5] 赵玉环,张晓斌. 线性随机发展方程的极大似然估计[J]. 山东大学学报(理学版), 2014, 49(05): 54-60.
[6] 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73.
[7] 周绍伟,赵明清,朱柘癟 . 理赔额服从指数分布的多险种的风险模型[J]. J4, 2007, 42(1): 28-30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢建民, . 相对Copure投射模[J]. J4, 2007, 42(8): 27 -29 .
[2] 谭秀梅,王华田*,孔令刚,王延平 . 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J]. J4, 2008, 43(1): 14 -19 .
[3] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[4] 郭文娟1,2,王英龙1,2,魏诺1,3,郭强1,3,周书旺1,2,3. 基于卡尔曼滤波的无线传感器网络时钟同步协议[J]. J4, 2010, 45(11): 32 -36 .
[5] 周建伟1,羊丹平2*. 二维区域Legendre-Galerkin谱方法的后验误差估计[J]. J4, 2011, 46(11): 122 -126 .
[6] 赵凯, 徐毅,王永刚. Tb定理的必要条件的一个证明[J]. J4, 2010, 45(6): 94 -98 .
[7] 张青洁,王文洽 . 色散方程高阶差分格式的并行迭代法[J]. J4, 2008, 43(2): 8 -11 .
[8] 柳福提1,2,程晓洪2,张淑华3. MgH2的结构与热力学性质的第一性原理研究[J]. J4, 2012, 47(1): 39 -43 .
[9] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103 -108 .
[10] 张燕,韦宇平,张良,付彦凯,徐建栋,徐霞. 一种基于小分子多肽配体检测AD7c-NTP的新方法[J]. 山东大学学报(理学版), 2016, 51(7): 121 -125 .