您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 1-8.doi: 10.6040/j.issn.1671-9352.0.2023.342

• •    

S-超格理想的相关性质

刘妮,崔盼盼   

  1. 陕西师范大学数学与统计学院, 陕西 西安 710119
  • 发布日期:2025-02-14
  • 作者简介:刘妮(1976— ),女,副教授,博士,研究方向为序代数与Domain理论. E-mail:niliu@snnu.edu.cn

On the properties of S-hyperlattice ideals

LIU Ni, CUI Panpan   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2025-02-14

摘要: 本文对S-超格理想的性质进行了探究。证明了两个S-超格的S-超格理想的直积是它们直积的S-超格理想,S-超格理想在S-超格满同态下的像和原像仍为S-超格理想,任意S-超格的全体S-超格理想构成一个代数的有顶交结构。举例说明了对于S-超格同余,最小元0所在的同余类一般不是S-超格理想,并给出了它是S-超格理想的一个充分条件,同时对任意S-超格理想,构造了以其为同余类的最大的S-超格同余。

关键词: 超格, S-超格, S-超格理想, S-超格同余, 交结构

Abstract: In this paper, the properties of S-hyperlattice ideals are explored. It is proved that the direct product of S-hyperlattice ideals of two S-hyperlattices is an S-hyperlattice ideal of their direct product, the homomorphic image and preimage of S-hyperlattice ideal are still S-hyperlattice ideals, the set of all S-hyperlattice ideals of an S-hyperlattice is an algebraic topped meet structure. It is illustrated that for an S-hyperlattice congruence, the congruence class of the smallest element zero is generally not an S-hyperlattice ideal, and a sufficient condition for it to be an S-hyperlattice ideal is given. While for an S-hyperlattice ideal, a maximal S-hyperlattice congruence with it as a congruence class is constructed.

Key words: hyperlattice, S-hyperlattice, S-hyperlattice ideal, S-hyperlattice congruence, meet structure

中图分类号: 

  • O153.1
[1] MARTY F. Sur une generalization de la notion de groupe[C] //Proceedings of 8th Congress Mathematiciens Scandenaves. Stockholm, Sweden:[s.n.] , 1934:45-49.
[2] ROSARIA R. Hyperaffine planes over hyperrings[J]. Discrete Mathematics, 1966, 155:215-223.
[3] XIN Xiaolong. Hyper BCI-algebras[J]. Discussiones Mathematicae General Algebra and Applications, 2006, 26(1):5-19.
[4] CORSINI P, LEOREANU-FOTEA V. Applications of hyperstructure theory[M]. Dordrecht: Kluwer, 2003.
[5] AL-TAHAN M, DAVVAZ B. Algebraic hyperstructures associated to biological inheritance[J]. Mathematical Biosciences, 2017, 285:112-118.
[6] DAVVAZ B, NEZAD A D, MAZLOUM-ARDAKANI M. Chemical hyperalgebra: redox reactions[J]. MATCH-Communications in Mathematical and in Computer Chemistry, 2014, 71(2):323-331.
[7] DEHGHAN NEZHAD A, MOOSAVI NEJAD S M, NADJAFIKHAH M, et al. A physical example of algebraic hyperstructures: Leptons[J]. Indian Journal of Physics, 2012, 86:1027-1032.
[8] KONSTANINIDOU M, MITTAS J. An introduction to the theory of hyperlattices[J]. Math Balkanica, 1977, 7: 187-193.
[9] 郭效芝,辛小龙. 超格[J]. 纯粹数学与应用数学, 2004, 20(1):40-43. GUO Xiaozhi, XIN Xiaolong. Hyperlattice[J]. Pure and Applied Mathematics, 2004, 20(1):40-43.
[10] ZHAO Bin, HAN Shengwei. The ideal on hyperlattices[J]. Fuzzy Systems and Mathematics, 2008, 22(4):44-51.
[11] KOGUEP B B N, LELE C. On hyperlattices: congruence relations, ideals and homomorphism[J]. Afrika Matematika, 2019, 30(1-2):101-111.
[12] 韩胜伟,赵彬. 分配超格[J]. 西北大学学报(自然科学版),2005,35(2):125-129. HAN Shengwei, ZHAO Bin. Distributive hyperlattices[J].Journal of Northwest University(Natural Science), 2005, 35(2):125-129.
[13] SOLTANI LASHKENARI A, DAVVAZ B. Complete join hyperlattices[J]. Indian Journal of Pure and Applied Mathematics, 2015, 46:633-645.
[14] JAKUBÍK J. On strong superlattices[J]. Mathematica Slovaca, 1994, 44(2):131-138.
[15] HEIDARI D, DAVVAZ B. On ordered hyperlattices[J]. University Politehnica of Bucharest Scientifific Bulletin(Series A: Applied Mathematics and Physics), 2011, 73(2):85-96.
[16] RAHNAMAI BARGHI A. The prime ideal theorem for distributive hyperlattices[J]. Italian Journal of Pure and Applied Mathematics, 2001, 10: 75-78.
[17] KOGUEP B B N, NKUIMI C, LELE C. On fuzzy ideals of hyperlattice[J]. International Journal of Algebra, 2008, 2(15): 739-750.
[18] 刘绍学. 近世代数基础[M]. 2版. 北京:高等教育出版社,2012. LIU Shaoxue. Foudation of mordern algebra[M]. 2nd. Beijing: Higher Education Press, 2012.
[19] 章璞,吴泉水.基础代数学讲义[M]. 北京: 高等教育出版社,2018. ZHANG Pu, WU Quanshui. Lectures on basic algebra[M]. Beijing: Higher Education Press, 2018.
[20] BULMAN-FLEMING S, MAHMOUDI M. The category of S-posets[J]. Semigroup Forum, 2005, 71:443-461.
[21] LUO Congwen. S-Lattice congruences of S-Lattices[J]. Academy of Mathematics and Systems Science, 2012(19):465-472.
[22] 温燕,罗从文. 格半群的表示和S-格[J]. 三峡大学学报(自然科学版),2007,29(5):467-469. WEN Yan, LUO Congwen. The representation of lattice ordered semigroups and S-lattices[J]. Journal of China Three Gorges University(Natural Sciences), 2007, 29(5):467-469.
[23] 李敏. 偏序超半群中的若干问题研究[D]. 江门: 五邑大学,2018. LI Min. Studies on some topics of partially ordered hypersemigroups[D]. Jiangmen: Wuyi University, 2018.
[24] 高连飞. 超序结构中的若干问题研究[D]. 江门: 五邑大学,2020. GAO Lianfei. Studies on some topics of hyperordered structures[D]. Jiangmen: Wuyi University, 2020.
[25] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 2002.
[1] 王玲,赵彬. Z-Quantale及其性质[J]. 《山东大学学报(理学版)》, 2024, 59(6): 76-83.
[2] 梁少辉,张雪亭,夏小刚. 对合m-半格中特殊元、理想及其范畴性质[J]. 《山东大学学报(理学版)》, 2024, 59(4): 1-8.
[3] 刘春辉,张海燕,李玉毛. 否定非对合剩余格的双极值模糊理想格[J]. 《山东大学学报(理学版)》, 2019, 54(9): 29-35.
[4] 段景瑶. 剩余格上逻辑度量空间的拓扑性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 9-16.
[5] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[6] 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72.
[7] 王海伟,赵彬. Q-并代数范畴中的投射对象[J]. 山东大学学报(理学版), 2018, 53(2): 73-82.
[8] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[9] 梁少辉. E-quantale范畴[J]. 山东大学学报(理学版), 2015, 50(12): 47-53.
[10] 鲁静, 赵彬. 模糊Quantale范畴中的投射对象[J]. 山东大学学报(理学版), 2015, 50(02): 47-54.
[11] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[12] 刘春辉. BL代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版), 2014, 49(10): 83-89.
[13] 梁少辉 赵彬. FS-Poset 若干性质的研究[J]. J4, 2009, 44(8): 51-55.
[14] 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98.
[15] 高雅,吴洪博. 拓扑系统中的闭包元和闭包集及其相关性质[J]. 《山东大学学报(理学版)》, 2022, 57(4): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!