您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 49-54.doi: 10.6040/j.issn.1671-9352.0.2023.415

• • 上一篇    下一篇

尼日利亚猴痘疫情不确定Logistic增长模型分析

陈丽丽,丁春晓*   

  1. 聊城大学数学科学学院, 山东 聊城 252000
  • 发布日期:2025-12-10
  • 通讯作者: 丁春晓(1987— ),女,副教授,硕士生导师,博士,研究方向为不确定理论和生物数学. E-mail:dingchunxiao1987@163.com
  • 作者简介:陈丽丽(2001— ),女,硕士研究生,研究方向为不确定理论和生物数学. E-mail:1784957151@qq.com*通信作者:丁春晓(1987— ),女,副教授,硕士生导师,博士,研究方向为不确定理论和生物数学. E-mail:dingchunxiao1987@163.com
  • 基金资助:
    国家自然科学基金资助项目(12026226);山东省自然科学基金资助项目(ZR2021MA089,ZR2022MF293)

Analysis of Mpox outbreak in Nigeria based on uncertain Logistic growth model

CHEN Lili, DING Chunxiao*   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, Shandong, China
  • Published:2025-12-10

摘要: 为了处理猴痘传播过程中的不确定性,利用不确定Logistic增长模型对尼日利亚猴痘疫情进行分析。首先,对尼日利亚疾控中心公布的猴痘累计确诊病例数据进行整理,并绘制出数据散点图。其次,建立Logistic增长模型,利用最小二乘法估计得到拟合Logistic增长模型,进而计算残差, 通过5种检验方法验证残差频率是不稳定的,说明随机logistic增长模型研究尼日利亚猴痘疫情的不适用性,进而采用不确定Logistic增长模型进行建模。最后,给出尼日利亚猴痘累计确诊病例数的预测值和95%的置信区间,并且通过交叉验证方法和直观对比观测值、预测值和置信区间验证模型的可行性。本研究为尼日利亚猴痘疫情防控和政策制定提供一定的理论支撑。

关键词: 不确定理论, 不确定回归分析, 不确定Logistic增长模型, 尼日利亚猴痘疫情

Abstract: In order to deal with uncertainty in the transmission process of Mpox, an uncertain Logistic growth model was used to analyze the Mpox epidemic in Nigeria. Firstly, the cumulative confirmed cases of Mpox published by the Nigeria Center for Disease Control and Prevention were sorted out, and the scatter plot of the data was illustrated. Then, a Logistic growth model was developed and the fitted Logistic growth model was obtained using least squares estimation, which in turn calculated the residuals. Verification of the instability of residual frequencies through five tests illustrated the inapplicability of the stochastic Logistic growth model to study the Mpox outbreak in Nigeria. The uncertain Logistic growth model was further used for modeling. Finally, the forecast values of the cumulative number of confirmed Mpox cases in Nigeria were given, and 95% confidence intervals were obtained. And the feasibility of the model was verified by cross-validation method and the direct comparison among observed values, forecast values and confidence intervals. This study provided some theoretical support for the prevention and control of Mpox epidemic and policy formulation in Nigeria.

Key words: uncertainty theory, uncertain regression analysis, uncertainty Logistic growth model, Mpox outbreak in Nigeria

中图分类号: 

  • O29
[1] KUMAR N, ACHARYA A, GENDELMAN H E, et al. The 2022 outbreak and the pathobiology of the monkeypox virus[J]. Journal of Autoimmunity, 2022, 131:102855.
[2] 李春喜, 姜丽娜, 邵云,等. 生物统计学[M]. 5版. 北京:科学出版社,2013:163-166. LI Chunxi, JIANG Lina, SHAO Yun, et al. Biostatistics[M]. Fifth ed. Beijing: Science Press, 2013:163-166.
[3] SHEN C Y. Logistic growth modelling of COVlD-19 proliferation in China and its international implications[J]. International Journal of Infectious Diseases, 2020, 96:582-589.
[4] MULLIGAN G F. Logistic population growth in the worlds largest cities[J]. Geographical Analysis, 2006, 38(4):344-370.
[5] MARTELLONI G, MARTELLONI G. Analysis of the evolution of the Sars-Cov-2 in Italy, the role of the asymptomatics and the success of Logistic model[J]. Chaos, Solitons & Fractals, 2020, 140:110150.
[6] LIU B D. Uncertainty Theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007.
[7] LIU B D. Some research problems in uncertainty theory[J]. Journal of Uncertain Systems, 2009, 3(1):3-10.
[8] 温艳清,刘宝亮,师海燕,等. 基于不确定理论的多部件竞争失效系统的可靠性评估[J]. 山东大学学报(理学版),2023,58(5):76-83. WEN Yanqing, LIU Baoliang, SHI Haiyan, et al. Reliability evaluation for multi-component competing failure system based on uncertainty theory[J]. Journal of Shandong University(Natural Science), 2023, 58(5):76-83.
[9] LIU B D. Uncertainty theory: a branch of mathematics for modelling human uncertainty[M]. Berlin: Springer-Verlag, 2010.
[10] YAO K, LIU B D. Uncertain regression analysis: an approach for imprecise observations[J]. Soft Computing, 2018, 22(17):5579-5582.
[11] LIO W, LIU B D. Residual and confidence interval for uncertain regression model with imprecise observations[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(2):2573-2583.
[12] LIO W, LIU B D. Uncertain maximum likelihood estimation with application to uncertain regression analysis[J]. Soft Computing, 2020, 24(13):9351-9360.
[13] LIU Y, LIU B D. A modified uncertain maximum likelihood estimation with applications in uncertain statistics[J]. Communications in Statistics-Theory and Methods, 2024, 53(18):6649-6670.
[14] LIU Y, LIU B D. Estimation of uncertainty distribution function by the principle of least squares[J]. Communications in Statistics-Theory and Methods, 2024, 53(21):7624-7641.
[15] YE T Q, LIU B D. Uncertain hypothesis test with application to uncertain regression analysis[J]. Fuzzy Optimization and Decision Making, 2022, 21(2):157-174.
[16] YE T Q, LIU B D. Uncertain significance test for regression coefficients with application to regional economic analysis[J]. Communications in Statistics-Theory and Methods, 2023, 52(20):7271-7288.
[17] LIU Z. Uncertain growth model for the cumulative number of COVID-19 infections in China[J]. Fuzzy Optimization and Decision Making, 2021, 20(2):229-242.
[18] LIU Y. Moment estimation for uncertain regression model with application to factors analysis of grain yield[J]. Communications in Statistics-Simulation and Computation, 2024, 53(10):4936-4946.
[1] 温艳清,刘宝亮,师海燕,陈剑慧,丰月姣. 基于不确定理论的多部件竞争失效系统的可靠性评估[J]. 《山东大学学报(理学版)》, 2023, 58(5): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任燕燕,姜明惠 . 动态平行数据模型中固定效应模型的模型设定问题[J]. J4, 2006, 41(5): 73 -76 .
[2] 郭双建1,董丽红2. 广义H-李代数的Engel定理[J]. 山东大学学报(理学版), 2014, 49(04): 55 -57 .
[3] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[4] 刘冰 陆玮洁 杨国生. 遗传算法在烷基硝基苯酚类化合物的QSRR中的应用[J]. J4, 2009, 44(9): 8 -11 .
[5] 姚庆六 . 两端固定的弱半正梁方程的解和正解[J]. J4, 2006, 41(6): 6 -10 .
[6] 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93 -98 .
[7] 张明,路慧芹 . 二阶非线性脉冲周期边值问题多个正解的存在性[J]. J4, 2009, 44(4): 51 -56 .
[8] 杜 鹏,刘 芳,霍贵成* . 离心条件对双歧杆菌存活力的影响[J]. J4, 2008, 43(7): 40 -44 .
[9] 王凤雨. 随机一般多孔介质与快速扩散方程[J]. J4, 2009, 44(10): 1 -3 .
[10] 焦玉娟 张申贵. A+xB[[x]]的S-Noether性质[J]. J4, 2009, 44(8): 58 -61 .