《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 49-54.doi: 10.6040/j.issn.1671-9352.0.2023.415
陈丽丽,丁春晓*
CHEN Lili, DING Chunxiao*
摘要: 为了处理猴痘传播过程中的不确定性,利用不确定Logistic增长模型对尼日利亚猴痘疫情进行分析。首先,对尼日利亚疾控中心公布的猴痘累计确诊病例数据进行整理,并绘制出数据散点图。其次,建立Logistic增长模型,利用最小二乘法估计得到拟合Logistic增长模型,进而计算残差, 通过5种检验方法验证残差频率是不稳定的,说明随机logistic增长模型研究尼日利亚猴痘疫情的不适用性,进而采用不确定Logistic增长模型进行建模。最后,给出尼日利亚猴痘累计确诊病例数的预测值和95%的置信区间,并且通过交叉验证方法和直观对比观测值、预测值和置信区间验证模型的可行性。本研究为尼日利亚猴痘疫情防控和政策制定提供一定的理论支撑。
中图分类号:
| [1] KUMAR N, ACHARYA A, GENDELMAN H E, et al. The 2022 outbreak and the pathobiology of the monkeypox virus[J]. Journal of Autoimmunity, 2022, 131:102855. [2] 李春喜, 姜丽娜, 邵云,等. 生物统计学[M]. 5版. 北京:科学出版社,2013:163-166. LI Chunxi, JIANG Lina, SHAO Yun, et al. Biostatistics[M]. Fifth ed. Beijing: Science Press, 2013:163-166. [3] SHEN C Y. Logistic growth modelling of COVlD-19 proliferation in China and its international implications[J]. International Journal of Infectious Diseases, 2020, 96:582-589. [4] MULLIGAN G F. Logistic population growth in the worlds largest cities[J]. Geographical Analysis, 2006, 38(4):344-370. [5] MARTELLONI G, MARTELLONI G. Analysis of the evolution of the Sars-Cov-2 in Italy, the role of the asymptomatics and the success of Logistic model[J]. Chaos, Solitons & Fractals, 2020, 140:110150. [6] LIU B D. Uncertainty Theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007. [7] LIU B D. Some research problems in uncertainty theory[J]. Journal of Uncertain Systems, 2009, 3(1):3-10. [8] 温艳清,刘宝亮,师海燕,等. 基于不确定理论的多部件竞争失效系统的可靠性评估[J]. 山东大学学报(理学版),2023,58(5):76-83. WEN Yanqing, LIU Baoliang, SHI Haiyan, et al. Reliability evaluation for multi-component competing failure system based on uncertainty theory[J]. Journal of Shandong University(Natural Science), 2023, 58(5):76-83. [9] LIU B D. Uncertainty theory: a branch of mathematics for modelling human uncertainty[M]. Berlin: Springer-Verlag, 2010. [10] YAO K, LIU B D. Uncertain regression analysis: an approach for imprecise observations[J]. Soft Computing, 2018, 22(17):5579-5582. [11] LIO W, LIU B D. Residual and confidence interval for uncertain regression model with imprecise observations[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(2):2573-2583. [12] LIO W, LIU B D. Uncertain maximum likelihood estimation with application to uncertain regression analysis[J]. Soft Computing, 2020, 24(13):9351-9360. [13] LIU Y, LIU B D. A modified uncertain maximum likelihood estimation with applications in uncertain statistics[J]. Communications in Statistics-Theory and Methods, 2024, 53(18):6649-6670. [14] LIU Y, LIU B D. Estimation of uncertainty distribution function by the principle of least squares[J]. Communications in Statistics-Theory and Methods, 2024, 53(21):7624-7641. [15] YE T Q, LIU B D. Uncertain hypothesis test with application to uncertain regression analysis[J]. Fuzzy Optimization and Decision Making, 2022, 21(2):157-174. [16] YE T Q, LIU B D. Uncertain significance test for regression coefficients with application to regional economic analysis[J]. Communications in Statistics-Theory and Methods, 2023, 52(20):7271-7288. [17] LIU Z. Uncertain growth model for the cumulative number of COVID-19 infections in China[J]. Fuzzy Optimization and Decision Making, 2021, 20(2):229-242. [18] LIU Y. Moment estimation for uncertain regression model with application to factors analysis of grain yield[J]. Communications in Statistics-Simulation and Computation, 2024, 53(10):4936-4946. |
| [1] | 温艳清,刘宝亮,师海燕,陈剑慧,丰月姣. 基于不确定理论的多部件竞争失效系统的可靠性评估[J]. 《山东大学学报(理学版)》, 2023, 58(5): 76-83. |
|