《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 38-48.doi: 10.6040/j.issn.1671-9352.0.2023.434
押宝,何杰
YA Bao, HE Jie
摘要: 为研究宿主的扩散和空间异质性对蚊媒疾病传播的影响,建立一类具有不同扩散速率的反应扩散蚊媒疾病模型。首先,基于下一代算子理论定义模型的基本再生数R0,并分析大扩散和小扩散对R0的影响;其次,利用动力系统的持续性理论,证明R0-1的符号决定模型的全局阈值动力学;最后,通过数值模拟验证理论结果,并表明空间异质性可能会增加疾病传播的风险。
中图分类号:
| [1] PATES H, CURTIS C. Mosquito behavior and vector control[J]. Annual Review of Entomology, 2005, 50(1):53-70. [2] SHRAGAI T, TESLA B, MURDOCK C, et al. Zika and chikungunya: mosquito-borne viruses in a changing world[J]. Annals of the New York Academy of Sciences, 2017, 1399(1):61-77. [3] 王玮明,蔡永丽. 生物数学模型斑图动力学[M]. 北京:科学出版社,2020:193-194. WANG Weiming, CAI Yongli. Pattern dynamics in biological mathematical models[M]. Beijing: Science Press, 2020:193-194. [4] WANG W D, ZHAO X Q. A nonlocal and time-delayed reaction-diffusion model of dengue transmission[J]. SIAM Journal on Applied Mathematics, 2011, 71(1):147-168. [5] ZHA Y J, JIANG W H. Global dynamics and asymptotic profiles for a degenerate Dengue fever model in heterogeneous environment[J]. Journal of Differential Equations, 2023, 348(1):278-319. [6] LOU Y J, ZHAO X Q. A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62(4):543-568. [7] WANG J L, WU W J, LI C Y. Dynamical analysis of a reaction-diffusion mosquito-borne model in a spatially heterogeneous environment[J]. Advances in Nonlinear Analysis, 2023, 12(1):20220295. [8] ZHAO H Y, WANG K, WANG H. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment[J]. Journal of Mathematical Biology, 2023, 86(3):32. [9] SHI Y Y, ZHAO H Y. Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias[J]. Journal of Mathematical Biology, 2021, 82(4):1-44. [10] GAO D Z, VAN DEN DRIESSCHE P, COSNER C. Habitat fragmentation promotes malaria persistence[J]. Journal of Mathematical Biology, 2019, 79(6):2255-2280. [11] BAI Z G, PENG R, ZHAO X Q. A reaction-diffusion malaria model with seasonality and incubation period[J]. Journal of Mathematical Biology, 2018, 77(1):201-228. [12] SHAO M N, ZHAO H Y. Dynamics and optimal control of a stochastic Zika virus model with spatial diffusion[J]. Mathematical Biosciences and Engineering, 2023, 20(9):17520-17553. [13] MIDEGA J T, MBOGO C M, MWAMBI H, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods[J]. Journal of Medical Entomology, 2007, 44(6):923-929. [14] 齐亚强,李琳. 中国预期寿命变动的地区差异及其社会经济影响因素:1981—2010[J]. 中国卫生政策研究,2018,11(8):29-35. QI Yaqiang, LI Lin. Regional differences in changes in life expectancy in China and its socioeconomic influencing factors: 1981—2010[J]. Chinese Journal of Health Policy, 2018, 11(8):29-35. [15] ZHAO X Q. Dynamical systems in population biology[M]. 2nd ed. Cham: Springer, 2017:1-87. [16] ROBERT V, MACINTYRE K, KEATING J, et al. Malaria transmission in urban sub-Saharan Africa[J]. The American Journal of Tropical Medicine and Hygiene, 2003, 68(2):169-176. [17] HARRINGTON L C, SCOTT T W, LERDTHUSNEE K, et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities[J]. The American Journal of Tropical Medicine and Hygiene, 2005, 72(2):209-220. [18] 刘起勇,刘小波,周广超,等. 基于标记-释放-重捕技术的中华按蚊飞行距离初步研究[J]. 中国媒介生物学及控制杂志, 2011, 22(3):201-204. LIU Qiyong, LIU Xiaobo, ZHOU Guangchao, et al. Primary study on the flight range of Anopheles sinensis based on the mark-release-recapture method in Yongcheng city, Henan province[J]. Chinese Journal of Vector Biology and Control, 2011, 22(3):201-204. [19] SMITH, H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995:120-134. [20] WANG J L, WU W J, KUNIYAB T. Analysis of a degenerated reaction-diffusion cholera model with spatial heterogeneity and stabilized total humans[J]. Mathematics and Computers in Simulation, 2022, 198(4):151-171. [21] WANG J L, WU X Q. Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates[J]. Journal of Dynamics and Differential Equations, 2023, 35(2):1205-1241. [22] THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics, 2009, 70(1):188-211. [23] PANG D F, XIAO Y N, ZHAO X Q. A cross-infection model with diffusive environmental bacteria[J]. Journal of Mathematical Analysis and Application, 2022, 505(2):125637. [24] WANG W D, ZHAO X Q. Basic reproduction numbers for reaction-diffusion epidemic models[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11(4):1652-1673. [25] DU Y H. Order structure and topological methods in nonlinear partial differential equations[M] //Maximum principles and applications, Singapore: World Scientific, 2006:1-8. [26] CANTRELL R S, COSNER C. Spatial ecology via reaction-diffusion equations[M]. Chichester: John Wiley & Sons, 2004. [27] ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1):1-20. [28] LOU Y, NAGYLAKI T. Evolution of a semilinear parabolic system for migration and selection without dominance[J]. Journal of Differential Equations, 2006, 225(2):624-665. [29] 何杰,褚慧洁. 一个部分退化反应扩散霍乱模型的阈值动力学[J]. 吉林大学学报(理学版),2023,61(4):831-839. HE Jie, CHU Huijie. Threshold dynamics of a partially degenerate reaction-diffusion cholera model[J]. Journal of Jilin University(Science Edition), 2023, 61(4):831-839. [30] LI F X, ZHAO X Q. Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality[J]. Bulletin of Mathematical Biology, 2021, 83(5):43. [31] NUSSBAUM R D. Eigenvectors of nonlinear positive operators and the linear KreinRutman theorem[M] //Fixed Point Theory. Berlin: Springer, 1981:309-330. [32] LIANG X, ZHANG L, ZHAO X Q. Basic reproduction ratios for periodic abstract functional differential equations(with application to a spatial model for Lyme disease)[J]. Journal of Dynamics and Differential Equations, 2019, 31(3):1247-1278. [33] WANG W D, ZHAO X Q. Spatial invasion threshold of Lyme disease[J]. SIAM Journal on Applied Mathematics, 2015, 75(3):1142-1170. [34] WANG K, WANG H, ZHAO H Y. Aggregation and classification of spatial dynamics of vector-borne disease in advective heterogeneous environment[J]. Journal of Differential Equations, 2023, 343(6):285-331. |
| [1] | 景月,侯强. 中国猴痘传播的再生数估计与动态分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 118-126. |
| [2] | 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121. |
| [3] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
| [4] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
| [5] | 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73. |
| [6] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
| [7] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
|