您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 38-48.doi: 10.6040/j.issn.1671-9352.0.2023.434

• • 上一篇    下一篇

一类具有不同扩散速率的蚊媒模型的动力学

押宝,何杰   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 发布日期:2025-12-10
  • 作者简介:押宝(2000— ),男,硕士研究生,研究方向为生物数学. E-mail:baoya_qw@163.com
  • 基金资助:
    西安电子科技大学2024年学科交叉拓展特支计划项目(TZJH2024001)

Dynamics of a mosquito-borne model with distinct dispersal rates

YA Bao, HE Jie   

  1. School of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Published:2025-12-10

摘要: 为研究宿主的扩散和空间异质性对蚊媒疾病传播的影响,建立一类具有不同扩散速率的反应扩散蚊媒疾病模型。首先,基于下一代算子理论定义模型的基本再生数R0,并分析大扩散和小扩散对R0的影响;其次,利用动力系统的持续性理论,证明R0-1的符号决定模型的全局阈值动力学;最后,通过数值模拟验证理论结果,并表明空间异质性可能会增加疾病传播的风险。

关键词: 蚊媒疾病, 空间异质性, 基本再生数, 阈值动力学

Abstract: In order to study the impact of host dispersal and spatial heterogeneity on the spread of mosquito-borne diseases, a reactive-diffusion mosquito-borne disease model with different diffusion rates is established. Firstly, the next-generation operator theory is applied to define the basic reproduction number R0 of the model, and the asymptotic behavior of R0 as the diffusion coefficient tending to zero and infinity is analyzed respectively. Secondly, according to the persistence theory of dynamical systems, it is proved that the sign of R0-1 determines the global threshold dynamics of the model. Finally, numerical simulations validate the theoretical results and show that spatial heterogeneity may increase the risk of disease transmission.

Key words: mosquito-borne diseases, spatial heterogeneity, basic reproduction number, threshold dynamics

中图分类号: 

  • O29
[1] PATES H, CURTIS C. Mosquito behavior and vector control[J]. Annual Review of Entomology, 2005, 50(1):53-70.
[2] SHRAGAI T, TESLA B, MURDOCK C, et al. Zika and chikungunya: mosquito-borne viruses in a changing world[J]. Annals of the New York Academy of Sciences, 2017, 1399(1):61-77.
[3] 王玮明,蔡永丽. 生物数学模型斑图动力学[M]. 北京:科学出版社,2020:193-194. WANG Weiming, CAI Yongli. Pattern dynamics in biological mathematical models[M]. Beijing: Science Press, 2020:193-194.
[4] WANG W D, ZHAO X Q. A nonlocal and time-delayed reaction-diffusion model of dengue transmission[J]. SIAM Journal on Applied Mathematics, 2011, 71(1):147-168.
[5] ZHA Y J, JIANG W H. Global dynamics and asymptotic profiles for a degenerate Dengue fever model in heterogeneous environment[J]. Journal of Differential Equations, 2023, 348(1):278-319.
[6] LOU Y J, ZHAO X Q. A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62(4):543-568.
[7] WANG J L, WU W J, LI C Y. Dynamical analysis of a reaction-diffusion mosquito-borne model in a spatially heterogeneous environment[J]. Advances in Nonlinear Analysis, 2023, 12(1):20220295.
[8] ZHAO H Y, WANG K, WANG H. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment[J]. Journal of Mathematical Biology, 2023, 86(3):32.
[9] SHI Y Y, ZHAO H Y. Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias[J]. Journal of Mathematical Biology, 2021, 82(4):1-44.
[10] GAO D Z, VAN DEN DRIESSCHE P, COSNER C. Habitat fragmentation promotes malaria persistence[J]. Journal of Mathematical Biology, 2019, 79(6):2255-2280.
[11] BAI Z G, PENG R, ZHAO X Q. A reaction-diffusion malaria model with seasonality and incubation period[J]. Journal of Mathematical Biology, 2018, 77(1):201-228.
[12] SHAO M N, ZHAO H Y. Dynamics and optimal control of a stochastic Zika virus model with spatial diffusion[J]. Mathematical Biosciences and Engineering, 2023, 20(9):17520-17553.
[13] MIDEGA J T, MBOGO C M, MWAMBI H, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods[J]. Journal of Medical Entomology, 2007, 44(6):923-929.
[14] 齐亚强,李琳. 中国预期寿命变动的地区差异及其社会经济影响因素:1981—2010[J]. 中国卫生政策研究,2018,11(8):29-35. QI Yaqiang, LI Lin. Regional differences in changes in life expectancy in China and its socioeconomic influencing factors: 1981—2010[J]. Chinese Journal of Health Policy, 2018, 11(8):29-35.
[15] ZHAO X Q. Dynamical systems in population biology[M]. 2nd ed. Cham: Springer, 2017:1-87.
[16] ROBERT V, MACINTYRE K, KEATING J, et al. Malaria transmission in urban sub-Saharan Africa[J]. The American Journal of Tropical Medicine and Hygiene, 2003, 68(2):169-176.
[17] HARRINGTON L C, SCOTT T W, LERDTHUSNEE K, et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities[J]. The American Journal of Tropical Medicine and Hygiene, 2005, 72(2):209-220.
[18] 刘起勇,刘小波,周广超,等. 基于标记-释放-重捕技术的中华按蚊飞行距离初步研究[J]. 中国媒介生物学及控制杂志, 2011, 22(3):201-204. LIU Qiyong, LIU Xiaobo, ZHOU Guangchao, et al. Primary study on the flight range of Anopheles sinensis based on the mark-release-recapture method in Yongcheng city, Henan province[J]. Chinese Journal of Vector Biology and Control, 2011, 22(3):201-204.
[19] SMITH, H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995:120-134.
[20] WANG J L, WU W J, KUNIYAB T. Analysis of a degenerated reaction-diffusion cholera model with spatial heterogeneity and stabilized total humans[J]. Mathematics and Computers in Simulation, 2022, 198(4):151-171.
[21] WANG J L, WU X Q. Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates[J]. Journal of Dynamics and Differential Equations, 2023, 35(2):1205-1241.
[22] THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics, 2009, 70(1):188-211.
[23] PANG D F, XIAO Y N, ZHAO X Q. A cross-infection model with diffusive environmental bacteria[J]. Journal of Mathematical Analysis and Application, 2022, 505(2):125637.
[24] WANG W D, ZHAO X Q. Basic reproduction numbers for reaction-diffusion epidemic models[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11(4):1652-1673.
[25] DU Y H. Order structure and topological methods in nonlinear partial differential equations[M] //Maximum principles and applications, Singapore: World Scientific, 2006:1-8.
[26] CANTRELL R S, COSNER C. Spatial ecology via reaction-diffusion equations[M]. Chichester: John Wiley & Sons, 2004.
[27] ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1):1-20.
[28] LOU Y, NAGYLAKI T. Evolution of a semilinear parabolic system for migration and selection without dominance[J]. Journal of Differential Equations, 2006, 225(2):624-665.
[29] 何杰,褚慧洁. 一个部分退化反应扩散霍乱模型的阈值动力学[J]. 吉林大学学报(理学版),2023,61(4):831-839. HE Jie, CHU Huijie. Threshold dynamics of a partially degenerate reaction-diffusion cholera model[J]. Journal of Jilin University(Science Edition), 2023, 61(4):831-839.
[30] LI F X, ZHAO X Q. Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality[J]. Bulletin of Mathematical Biology, 2021, 83(5):43.
[31] NUSSBAUM R D. Eigenvectors of nonlinear positive operators and the linear KreinRutman theorem[M] //Fixed Point Theory. Berlin: Springer, 1981:309-330.
[32] LIANG X, ZHANG L, ZHAO X Q. Basic reproduction ratios for periodic abstract functional differential equations(with application to a spatial model for Lyme disease)[J]. Journal of Dynamics and Differential Equations, 2019, 31(3):1247-1278.
[33] WANG W D, ZHAO X Q. Spatial invasion threshold of Lyme disease[J]. SIAM Journal on Applied Mathematics, 2015, 75(3):1142-1170.
[34] WANG K, WANG H, ZHAO H Y. Aggregation and classification of spatial dynamics of vector-borne disease in advective heterogeneous environment[J]. Journal of Differential Equations, 2023, 343(6):285-331.
[1] 景月,侯强. 中国猴痘传播的再生数估计与动态分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 118-126.
[2] 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121.
[3] 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96.
[4] 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15.
[5] 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73.
[6] 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78.
[7] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12 -15 .
[2] 王太峰,袁平波,荚济民,俞能海 . 基于新闻环境的人物肖像检索[J]. J4, 2006, 41(3): 5 -10 .
[3] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[4] 张亮,,王树梅,黄河燕,张孝飞 . 面向中文问答系统的问句句法分析[J]. J4, 2006, 41(3): 30 -33 .
[5] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61 -68 .
[6] 吴春雪 . Musielak-Orlicz 序列空间的WNUS性质[J]. J4, 2007, 42(3): 18 -22 .
[7] 胡云 胡林. 颗粒物质在二维竖直环仓内的输运及隆起现象[J]. J4, 2009, 44(11): 25 -28 .
[8] 王济荣1, 曹小红2. 上三角算子矩阵的Kato本质谱摄动[J]. J4, 2010, 45(3): 90 -95 .
[9] 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43 -50 .
[10] 万海平,何华灿,周延泉 . 局部核方法及其应用[J]. J4, 2006, 41(3): 18 -20 .