《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 107-115.doi: 10.6040/j.issn.1671-9352.0.2023.541
侯成婷1,陈占寿1,2*
HOU Chengting1, CHEN Zhanshou1,2*
摘要: 对一阶随机系数自回归模型(first-order random coefficient autoregressive model, RCA(1))的参数变点问题展开研究,提出了一种检验参数变点的基于位置和尺度的累积和(location and scale-based cumulative sum, LSCUSUM)检验统计量,在无变点原假设下推导出LSCUSUM统计量收敛于布朗桥的上界,并在备择假设下证明了该方法的一致性。数值模拟结果表明,LSCUSUM方法可以较好地控制经验水平,且相比RCA(1)模型参数变点的方法,经验势也有了一定程度的提高。最后通过所提方法分析了东晶电子股票的日收盘数据,检测出了该组数据中存在的变点。
中图分类号:
[1] 陈占寿. 基于Bootstrap方法的时间序列变点检测[M]. 北京:科学出版社,2020. CHEN Zhanshou. Time series change point detection based on Bootstrap method[M]. Beijing: Science Press, 2020. [2] INCLANC, TIAOG C. Use of cumulative sums of squares for retrospective detection of changes of variance[J]. Journal of the American Statistical Association, 1994, 89(427):913-923. [3] KIM S, CHO S, LEE S. On the CUSUM test for parameter changes in GARCH(1, 1)models[J]. Communications in Statistics: Theory and Methods, 2000, 29(2):445-462. [4] LEE S, HA J, NA O, et al. The CUSUM test for parameter change in time series models[J]. Scandinavian Journal of Statistics, 2003, 30(4):781-796. [5] BERKES I, HORVTH L, KOKOSZKA P. Testing for parameter constancy in GARCH(p,q)models[J]. Statistics & Probability Letters, 2004, 70(4):263-273. [6] GOMBAY E. Change detection in autoregressive time series[J]. Journal of Multivariate Analysis, 2008, 99(3):451-464. [7] KANG J, LEE S. Parameter change test for Poisson autoregressive models[J]. Scandinavian Journal of Statistics, 2014, 41(4):1136-1152. [8] LEE S, TOKUTSU Y, MAEKAWA K. The CUSUM test for parameter change in regression models with ARCH errors[J]. Journal of the Japan Statistical Society, 2004, 34(2):173-188. [9] LEE J, LEE S. Parameter change test for nonlinear time series models with GARCH type errors[J]. Journal of Korean Mathematical Society, 2015, 52(3):503-522. [10] OH H, LEE S. On score vector- and residual-based CUSUM tests in ARMA-GARCH models[J]. Statistical Methods and Applications, 2018, 27(3):385-406. [11] OH H, LEE S. Modified residual CUSUM test for location-scale time series models with heteroscedasticity[J]. Annals of the Institute of Statistical Mathematics, 2019, 71(5):1059-1091. [12] LEE S. Location and scale-based CUSUM test with application to autoregressive models[J]. Journal of Statistical Computation and Simulation, 2020, 90(13):2309-2328. [13] LEE S, LEE S, MOON M. Hybrid change point detection for time series via support vector regression and CUSUM method[J]. Applied Soft Computing, 2020, 89:106101. [14] RI Xihame, CHEN Zhanshou, LIANG Yan. Detecting structural change point in ARMA models via neural network regression and LSCUSUM methods[J]. Entropy, 2023, 25(1):133. [15] AUE A. Strong approximation for RCA(1)time series with applications[J]. Statistics and Probability Letters, 2004, 68(4): 369-382. [16] NA O, LEE J, LEE S. Monitoring parameter changes for random coefficient autoregressive models[J]. Journal of the Korean Statistical Society, 2010, 39(3):281-288. [17] ZHAO Zhiwen, WANG Dehui, PENG Cuixin. Test for parameter changes in generalized random coefficient autoregressive model[J]. Journal of Inequalities and Applications, 2014, 2014(1):309. [18] 李拂晓,田铮,陈占寿. 随机系数自回归模型变均值点在线监测与应用[J]. 控制理论与应用,2012,29(4):497-502. LI Fuxiao, TIAN Zheng, CHEN Zhanshou. Online monitoring of mean change point in a random coefficient autoregressive model[J]. Control Theory & Applications, 2012, 29(4):497-502. [19] LI Fuxiao, TIAN Zheng, QI Peiyan, et al. Monitoring parameter changes in RCA(p)models[J]. Journal of the Korean Statistical Society, 2015, 44(1):111-122. [20] 韩四儿,田铮,武新乾. 一类股市波动性预测模型的多变点检验[J]. 系统工程理论与实践,2006,26(3):94-101. HAN Sier, TIAN Zheng, WU Xinqian. Multiple change point test of a volatility forecasting models in the stock market[J]. Systems Engineering: Theory & Practice, 2006, 26(3):94-101. |
[1] | 张翠芸,郭精军,马爱琴. 基于离散观测的次分数Vasicek模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 15-26. |
[2] | 娘毛措, 陈占寿, 成守尧, 汪肖阳. 具有长记忆误差的线性回归模型参数变点的在线监测[J]. 《山东大学学报(理学版)》, 2022, 57(4): 91-99. |
[3] | 任鹏程,徐静,李新民. 风险价值VaR的区间估计[J]. 山东大学学报(理学版), 2017, 52(2): 85-90. |
[4] | 王小焕,吕广迎,戴利杰. Gronwall不等式的推广及应用[J]. 《山东大学学报(理学版)》, 2022, 57(6): 94-101. |
[5] | 张宪友,李东喜. 基于spike-and-slab先验分布的贝叶斯变量选择方法[J]. 《山东大学学报(理学版)》, 2021, 56(12): 84-93. |
[6] | 段体城,许成凯,鲁紫婕,贾沛焱,谢素雅,杨文志. 混合误差下一阶适度爆炸自回归模型最小二乘估计[J]. 《山东大学学报(理学版)》, 2025, 60(3): 77-87. |
|