您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 107-115.doi: 10.6040/j.issn.1671-9352.0.2023.541

• • 上一篇    下一篇

基于LSCUSUM方法的RCA(1)模型参数变点检验

侯成婷1,陈占寿1,2*   

  1. 1.青海师范大学数学与统计学院, 青海 西宁 810008;2.青海师范大学省部共建藏语智能信息处理及应用国家重点实验室, 青海 西宁 810008
  • 发布日期:2025-03-10
  • 通讯作者: 陈占寿(1982— ),男,教授,博士,研究方向为应用数理统计. E-mail:chenzhanshou@ 126.com
  • 作者简介:侯成婷(1999— ),女,硕士研究生,研究方向为应用数理统计. E-mail:980289934@qq.com*通信作者:陈占寿(1982— ),男,教授,博士,研究方向为应用数理统计. E-mail:chenzhanshou@ 126.com
  • 基金资助:
    国家自然科学基金资助项目(12161072);青海省自然科学基金资助项目(2024-ZJ-933)

Test of parameter change point in RCA(1)model based on LSCUSUM method

HOU Chengting1, CHEN Zhanshou1,2*   

  1. 1. School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. The State Key Labora-tory of Tibetan Intelligent Information Processing and Application Jointly Built by Qinghai Normal University, Xining 810008, Qinghai, China
  • Published:2025-03-10

摘要: 对一阶随机系数自回归模型(first-order random coefficient autoregressive model, RCA(1))的参数变点问题展开研究,提出了一种检验参数变点的基于位置和尺度的累积和(location and scale-based cumulative sum, LSCUSUM)检验统计量,在无变点原假设下推导出LSCUSUM统计量收敛于布朗桥的上界,并在备择假设下证明了该方法的一致性。数值模拟结果表明,LSCUSUM方法可以较好地控制经验水平,且相比RCA(1)模型参数变点的方法,经验势也有了一定程度的提高。最后通过所提方法分析了东晶电子股票的日收盘数据,检测出了该组数据中存在的变点。

关键词: 随机系数自回归模型, LSCUSUM统计量, 参数变点, 变点检验

Abstract: The parameter change point problem of the first-order random coefficient autoregressive(RCA(1))model is studied, and a location and scale based cumulative sum(LSCUSUM)test statistic is proposed to test the parameter change points. Under the null hypothesis of no change points, the convergence of the LSCUSUM statistic to the upper bound of the Brownian bridge is derived. Consistency of the method is established under the alternative hypothesis. Numerical simulation results demonstrate that the introduced LSCUSUM method effectively controls the empirical level. Furthermore, compared to existing methods for testing parameter change points in RCA(1)models, the proposed approach exhibits an enhanced empirical power. Finally, the method is applied to analyze daily closing data of Dongjing electronics stock, and detect the change points within the dataset.

Key words: random coefficient model, LSCUSUM test, parameter change point, change point test

中图分类号: 

  • O212.1
[1] 陈占寿. 基于Bootstrap方法的时间序列变点检测[M]. 北京:科学出版社,2020. CHEN Zhanshou. Time series change point detection based on Bootstrap method[M]. Beijing: Science Press, 2020.
[2] INCLANC, TIAOG C. Use of cumulative sums of squares for retrospective detection of changes of variance[J]. Journal of the American Statistical Association, 1994, 89(427):913-923.
[3] KIM S, CHO S, LEE S. On the CUSUM test for parameter changes in GARCH(1, 1)models[J]. Communications in Statistics: Theory and Methods, 2000, 29(2):445-462.
[4] LEE S, HA J, NA O, et al. The CUSUM test for parameter change in time series models[J]. Scandinavian Journal of Statistics, 2003, 30(4):781-796.
[5] BERKES I, HORVTH L, KOKOSZKA P. Testing for parameter constancy in GARCH(p,q)models[J]. Statistics & Probability Letters, 2004, 70(4):263-273.
[6] GOMBAY E. Change detection in autoregressive time series[J]. Journal of Multivariate Analysis, 2008, 99(3):451-464.
[7] KANG J, LEE S. Parameter change test for Poisson autoregressive models[J]. Scandinavian Journal of Statistics, 2014, 41(4):1136-1152.
[8] LEE S, TOKUTSU Y, MAEKAWA K. The CUSUM test for parameter change in regression models with ARCH errors[J]. Journal of the Japan Statistical Society, 2004, 34(2):173-188.
[9] LEE J, LEE S. Parameter change test for nonlinear time series models with GARCH type errors[J]. Journal of Korean Mathematical Society, 2015, 52(3):503-522.
[10] OH H, LEE S. On score vector- and residual-based CUSUM tests in ARMA-GARCH models[J]. Statistical Methods and Applications, 2018, 27(3):385-406.
[11] OH H, LEE S. Modified residual CUSUM test for location-scale time series models with heteroscedasticity[J]. Annals of the Institute of Statistical Mathematics, 2019, 71(5):1059-1091.
[12] LEE S. Location and scale-based CUSUM test with application to autoregressive models[J]. Journal of Statistical Computation and Simulation, 2020, 90(13):2309-2328.
[13] LEE S, LEE S, MOON M. Hybrid change point detection for time series via support vector regression and CUSUM method[J]. Applied Soft Computing, 2020, 89:106101.
[14] RI Xihame, CHEN Zhanshou, LIANG Yan. Detecting structural change point in ARMA models via neural network regression and LSCUSUM methods[J]. Entropy, 2023, 25(1):133.
[15] AUE A. Strong approximation for RCA(1)time series with applications[J]. Statistics and Probability Letters, 2004, 68(4): 369-382.
[16] NA O, LEE J, LEE S. Monitoring parameter changes for random coefficient autoregressive models[J]. Journal of the Korean Statistical Society, 2010, 39(3):281-288.
[17] ZHAO Zhiwen, WANG Dehui, PENG Cuixin. Test for parameter changes in generalized random coefficient autoregressive model[J]. Journal of Inequalities and Applications, 2014, 2014(1):309.
[18] 李拂晓,田铮,陈占寿. 随机系数自回归模型变均值点在线监测与应用[J]. 控制理论与应用,2012,29(4):497-502. LI Fuxiao, TIAN Zheng, CHEN Zhanshou. Online monitoring of mean change point in a random coefficient autoregressive model[J]. Control Theory & Applications, 2012, 29(4):497-502.
[19] LI Fuxiao, TIAN Zheng, QI Peiyan, et al. Monitoring parameter changes in RCA(p)models[J]. Journal of the Korean Statistical Society, 2015, 44(1):111-122.
[20] 韩四儿,田铮,武新乾. 一类股市波动性预测模型的多变点检验[J]. 系统工程理论与实践,2006,26(3):94-101. HAN Sier, TIAN Zheng, WU Xinqian. Multiple change point test of a volatility forecasting models in the stock market[J]. Systems Engineering: Theory & Practice, 2006, 26(3):94-101.
[1] 张翠芸,郭精军,马爱琴. 基于离散观测的次分数Vasicek模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 15-26.
[2] 娘毛措, 陈占寿, 成守尧, 汪肖阳. 具有长记忆误差的线性回归模型参数变点的在线监测[J]. 《山东大学学报(理学版)》, 2022, 57(4): 91-99.
[3] 任鹏程,徐静,李新民. 风险价值VaR的区间估计[J]. 山东大学学报(理学版), 2017, 52(2): 85-90.
[4] 王小焕,吕广迎,戴利杰. Gronwall不等式的推广及应用[J]. 《山东大学学报(理学版)》, 2022, 57(6): 94-101.
[5] 张宪友,李东喜. 基于spike-and-slab先验分布的贝叶斯变量选择方法[J]. 《山东大学学报(理学版)》, 2021, 56(12): 84-93.
[6] 段体城,许成凯,鲁紫婕,贾沛焱,谢素雅,杨文志. 混合误差下一阶适度爆炸自回归模型最小二乘估计[J]. 《山东大学学报(理学版)》, 2025, 60(3): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[2] 谢云龙,杜英玲 . 函数S-粗集与规律积分度量[J]. J4, 2007, 42(10): 118 -122 .
[3] 李志涛 付红斐. 对流占优扩散问题的特征动态有限元方法[J]. J4, 2009, 44(8): 90 -96 .
[4] 许春华,高宝玉*,卢磊,徐世平,曹百川,岳钦艳,张建 . 城市纳污河道废水化学强化一级处理的研究[J]. J4, 2006, 41(2): 116 -120 .
[5] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[6] 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13 -17 .
[7] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85 -90 .
[8] 李志荣 . 广义m阶Bell数和广义m阶有序Bell数的计算公式[J]. J4, 2007, 42(2): 59 -63 .
[9] 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57 -60 .
[10] 董新梅 . 关于Suryanarayana的若干问题[J]. J4, 2007, 42(2): 83 -86 .