《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 13-21.doi: 10.6040/j.issn.1671-9352.0.2023.550
• • 上一篇
赵钰琳,梁峰宁,赵藤,曹亚茹,王淋,朱红*
ZHAO Yulin, LIANG Fengning, ZHAO Teng, CAO Yaru, WANG Lin, ZHU Hong*
摘要: 针对目前基于磁共振成像(magnetic resonance imaging, MRI)的胶质瘤异柠檬酸脱氢酶1(isocitrate dehydrogenase 1, IDH1)基因状态预测的深度学习模型中存在的深度网络特征提取不全面、模型存在固有的不确定性等问题,提出基于改进的残差网络(residual network, ResNet)与真值发现的TDA-ResNet(truth discovery divided attention-ResNet)模型。通过分散注意力机制优化ResNet网络模型架构,提取胶质瘤影像局部与全局特征,对胶质瘤IDH1基因状态进行预测;同时在模型中融入真值发现算法,对作为预测结果的深度特征向量进行不确定性校准,提高模型预测准确率。实验数据收集自徐州医科大学附属医院部分胶质瘤患者的MR影像及癌症影像档案(the cancer imaging archive, TCIA)公有数据集。TDA-ResNet模型在徐州医科大学附属医院胶质瘤MR影像数据集及TCIA数据集中的实验准确率分别为95.73%和94.3%。实验结果表明,TDA-ResNet模型可实现对脑胶质瘤IDH1基因状态无创预测及不确定性校准,其性能优于现有的IDH1基因状态深度学习预测模型,对脑胶质瘤临床诊疗具有重要意义。
中图分类号:
[1] SLEDZINSKA P, BEBYN M, FURTAK J, et al. Current and promising treatment strategies in glioma[J]. Reviews in the Neurosciences, 2022, 34(5):483-516. [2] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro-Oncology, 2021, 23(8):1231-1251. [3] XU Jie, XU Fangping, LIU Zhihua, et al. The correlation analysis of TERT promoter mutations with IDH1/2 mutations and 1p/19q detected in human gliomas[J]. Medicine, 2022, 101(29):e29668. [4] OHBA S, KUWAHARA K, YAMADA S, et al. Correlation between IDH, ATRX, and TERT promoter mutations in glioma[J]. Brain Tumor Pathology, 2020, 37(2):33-40. [5] LI Yiming, WEI Dong, LIU Xing, et al. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning[J]. European Radiology, 2022, 32(2):747-758. [6] WENG G D, ERMI?瘙塁 E, MARAGKOU T, et al. Accurate prediction of isocitrate dehydrogenase-mutation status of gliomas using SLOW-editing magnetic resonance spectroscopic imaging at 7 T MR[J]. Neuro-Oncology Advances, 2023, 5(1):vdad001. [7] XU Qian, XU Qianqian, SHI Nian, et al. A multitask classification framework based on vision transformer for predicting molecular expressions of glioma[J]. European Journal of Radiology, 2022, 157:110560 [8] MA Chunwei, HUANG Ziyun, XIAN Jiayi, et al. Improving uncertainty calibration of deep neural networks via truth discovery and geometric optimization[C] //Uncertainty in Artificial Intelligence. [S.l.] :PMLR, 2021:75-85. [9] MURUGESAN B, LIU B Y, GALDRAN A, et al. Calibrating segmentation networks with margin-based label smoothing[J]. Medical Image Analysis, 2023, 87:102826. [10] BUDDENKOTTE T, ESCUDERO SANCHEZ L, CRISPIN-ORTUZAR M, et al. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation[J]. Computers in Biology and Medicine, 2023, 163:107096. [11] CANT K, EVINS R. Improved calibration of building models using approximate Bayesian calibration and neural networks[J]. Journal of Building Performance Simulation, 2023, 16(3):291-307. [12] SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18):8972. [13] XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:1492-1500. [14] DING Hu, XU Jinhui. Learning the truth vector in high dimensions[J]. Journal of Computer and System Sciences, 2020, 109:78-94. [15] KUMAR A, LIANG P, MA T. Verified uncertainty calibration[EB/OL].(2019-09-23)[2023-12-29]. http://arxiv.org/abs/1909.10155. [16] GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C] //Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney: ACM, 2017:1321-1330. [17] 曹建军,常宸,翁年凤,等. 基于神经网络编码的真值发现[J]. 计算机工程与科学,2021,43(9):1546-1557. CAO Jianjun, CHANG Chen, WENG Nianfeng, et al. Truth discovery based on neural network encoding[J]. Computer Engineering & Science, 2021, 43(9):1546-1557. [18] XU Haitao, ZHANG Haiwang, LI Qianqian, et al. A data-semantic-conflict-based multi-truth discovery algorithm for a programming site[J]. Computers, Materials & Continua, 2021, 68(2):2681-2691. [19] CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro-Oncology, 2021, 23(2):304-313. [20] TAHA B, LI T H, BOLEY D, et al. Detection of isocitrate dehydrogenase mutated glioblastomas through anomaly detection analytics[J]. Neurosurgery, 2021, 89(2):323-328. [21] KAWAGUCHI R K, TAKAHASHI M, MIYAKE M, et al. Assessing versatile machine learning models for glioma radiogenomic studies across hospitals[J]. Cancers, 2021, 13(14):3611. |
[1] | 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11. |
[2] | 李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 59-70. |
[3] | 徐华畅,许倩,赵钰琳,梁峰宁,徐凯,朱红. 基于改进EfficientNetV2的脑胶质瘤IDH1突变状态预测方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 60-66. |
[4] | 仲诚诚,周恒,张梓童,张春雷. LAC-UNet: 基于胶囊表达局部-整体特征关系的语义分割模型[J]. 《山东大学学报(理学版)》, 2023, 58(11): 116-126. |
[5] | 徐菲菲,许赟杰. 基于Arc-LSTM的人职匹配研究[J]. 《山东大学学报(理学版)》, 2021, 56(1): 83-90. |
[6] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[7] | 刘飚,路哲,黄雨薇,焦萌,李泉其,薛瑞. 神经网络结构在功耗分析中的性能对比[J]. 《山东大学学报(理学版)》, 2019, 54(1): 60-66. |
[8] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[9] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[10] | 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73. |
|