您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 94-102.doi: 10.6040/j.issn.1671-9352.0.2024.009

• • 上一篇    下一篇

Rn中凸体的平均曲率积分不等式

兰雨,冉启伟,曾春娜*   

  1. 重庆师范大学数学科学学院, 重庆 401331
  • 发布日期:2025-12-10
  • 通讯作者: 曾春娜(1983— ),女,教授,硕士生导师,研究方向为积分几何与凸几何分析. E-mail:zengchn@163.com
  • 作者简介:兰雨(2001— ),女,硕士研究生,研究方向为积分几何与凸几何分析. E-mail:2548201157@qq.com*通信作者:曾春娜(1983— ),女,教授,硕士生导师,研究方向为积分几何与凸几何分析. E-mail:zengchn@163.com
  • 基金资助:
    重庆英才青年拔尖计划(CQYC2021059145);重庆市教育委员会科学技术研究项目(KJZD-K202200509);重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX0937)

On integral inequalities of mean curvature for convex bodies in Rn

LAN Yu, RAN Qiwei, ZENG Chunna*   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Published:2025-12-10

摘要: 通过运用凸函数的积分不等式获得了凸体的第i阶平均曲率积分任意次幂的估计,进而获得Chen不等式和Ros不等式的加强形式,并对Willmore不等式及Ros不等式进行了推广并获得了曲率熵不等式的上界估计。

关键词: 平均曲率积分不等式, Ros不等式, 概率空间, Willmore不等式

Abstract: By applying integral inequalities for convex functions we obtain an estimate of the i-th order mean curvature integral powers of a convex body, thereby a strengthened form of Chen and Ros inequalities are given. Further more, by means of these obtained conclusions, we obtain the strengther form of Willmore inequality and Ross inequality, and an upper bound estimate for the curvature entropy inequality.

Key words: mean curvature integral inequality, Ros inequality, probability space, Willmore inequality

中图分类号: 

  • O186
[1] GAGE M E. An isoperimetric inequality with applications to curveshortening[J]. Duke Mathematical Journal, 1983, 50(4):1225-1229.
[2] GREEN M, OSHER S. Steiner polynomials, wulff flows, and some new isoperimetric inequalities for convex plane curves[J]. Asian Journal of Mathematics, 1999, 3(3):659-676.
[3] GAO L Y, PAN S L, TSAI D H. Nonlocal flow driven by the radius of curvature with fixed curvature integral[J]. The Journal of Geometric Analysis, 2020, 30(3):2939-2973.
[4] LIN Y C, TSAI D H. Application of Andrews and Green-Osher inequalities to nonlocal flow of convex plane curves[J]. Journal of Evolution Equations, 2012, 12(4):833-854.
[5] YANG Y L. Nonsymmetric extension of the green-osher inequality[J]. Geometriae Dedicata, 2019, 203(1):155-161.
[6] YANG Y L, ZHANG D Y. The green-osher inequality in relativegeometry[J]. Bulletin of the Australian Mathematical Society, 2016, 94(1):155-164.
[7] CARMO M P. Differential geometry of curves and surfaces:revised and updated[M]. 2nd ed. New York: Courier Dover Publications, 2016.
[8] WILLMORE T J. Mean curvature of immersed surfaces[J]. Topics in Differential Geometry, 1976:149-156.
[9] CHEN Bangyen. Geometry of submanifolds and its applications[J]. Science University of Tokyo, 1981:96.
[10] CHEN B Y. On the total curvature of immersed manifolds, I: an inequality of fenchel-borsuk-willmore[J]. American Journal of Mathematics, 1971, 93(1):148-162.
[11] ROS A. Compact hypersurfaces with constant scalar curvature and a congruence theorem[J]. Journal of Differential Geometry, 1988, 27(2):215-220.
[12] 周家足,姜德烁,李明,等. 超曲面的Ros定理[J]. 数学学报,2009,52(6):1075-1084. ZHOU Jiazu, JIANG Deshuo, LI Ming, et al. On Ros theorem for hypersurfaces[J]. Acta Mathematica Sinica(Chinese Series), 2009, 52(6):1075-1084.
[13] OSSERMAN R. Curvature in the eighties[J]. American Mathematical Monthly, 1990, 97(8):731-736.
[14] ZHOU J Z. On the Willmore s theorem for convex hypersurfaces[J]. Acta Mathematica Scientia, 2011, 31(2):361-366.
[15] SCHNEIDER R. Convex bodies: the Brunn-Minkowski theory[M]. Cambridge: Cambridge University Press, 2013.
[16] STEINER J. Ueber parallele flächen[J]. Monatsbericht Preuss Akad Wiss, 1840, 2:114-118.
[17] CIFRE M A H, ALONSO-GUTIÉRREZ D. Estimates for the integrals of powered i-th mean curvatures[M] //BIANCHI G, COLESANTI A, GRONCHI P, et al. Springer INdAM Series. Cham: Springer International Publishing, 2017:19-37.
[18] GAO Laiyuan, PAN Shengliang, YANG Yunlong. Some notes on Green-Osher s inequality[J]. Journal of Mathematical Inequalities, 2015(2):369-380.
[19] GUAN P F, NI L. Entropy and a convergence theorem for Gauss curvature flow in high dimension[J]. Journal of the European Mathematical Society, 2017, 19(12):3735-3761.
[20] ZENG C N, DONG X, WANG Y L, et al. The log-Minkowski inequality of curvature entropy for non-symmetric convex bodies[EB/OL]. 2022: 2211.14484. https://arxiv.org/abs/2211.14484v1.
[1] 李世龙,刘茜. 融合风险比率的双触发巨灾看跌期权及其定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 12-21.
[2] 马丽娜 王国俊. Lukasiewicz三值逻辑中命题的真度值之集在[0,1]上的分布[J]. J4, 2009, 44(10): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107 -110 .
[2] 张晓,张玉臻,刘军军,刘红蕾*. 不同碳源下Pseudomonas putida F1单环芳烃降解相关蛋白质的差异表达[J]. J4, 2013, 48(05): 14 -19 .
[3] 王文康 . 矩阵环的极大的广义Armendariz子环[J]. J4, 2007, 42(8): 74 -78 .
[4] 陈翠. 加权型空间上的n阶微分复合算子[J]. J4, 2013, 48(4): 57 -59 .
[5] 赵秀凤, 王爱兰, 汪翔. LWE求逆算法的门限方案[J]. 山东大学学报(理学版), 2014, 49(07): 34 -37 .
[6] . 代理人状态不可验证契约纳什实施惟一性分析[J]. J4, 2009, 44(6): 33 -39 .
[7] 花兆秀,牛明飞 . 在索赔额相依的风险模型中的阈值分红策略[J]. J4, 2008, 43(10): 91 -96 .
[8] 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11 -16 .
[9] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60 -64 .
[10] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .