《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 84-93.doi: 10.6040/j.issn.1671-9352.0.2023.475
许一诺1,刘利斌1*,杨秀2
XU Yinuo1, LIU Libin1*, YANG Xiu2
摘要: 研究一类带时滞项的二阶奇异摄动微分方程的自适应网格算法。首先,通过积分变换,得到一个带时滞项的一阶奇异摄动Volterra积分微分方程;其次,利用向后差分和左矩形公式,在任意网格上构造一个一阶有限差分格式,利用离散的Grönwall不等式,给出离散格式的先验误差估计,并基于网格等分布原理设计一个自适应移动网格算法,在该自适应网格下,证明离散格式为一阶一致收敛;最后,数值实验结果验证理论分析。
中图分类号:
| [1] BELLMAN R, COOKE K L. Differential-difference equations[M]. New York: Academic Press, 1963:155-171. [2] DRIVER R D. Ordinary and Delay Differential Equations[M]. New York: Springer, 1977. [3] BELLEN A, ZENNARO M. Numerical methods for delay differential equations[M]. Oxford: Clarendon Press, 2003. [4] (·overE)L'SGOL'TS L(·overE). Qualitative methods in mathematical analysis[M]. Providence: American Mathematical Society, 1964. [5] STEIN R B. A theoretical analysis of neuronal variability[J]. Biophysical Journal, 1965, 5(2):173-194. [6] TUCKWELL H C. On the first-exit time problem for temporally homogeneous Markov processes[J]. Journal of Applied Probability, 1976, 13(1):39-48. [7] MCCARTIN B J. Exponential fitting of the delayed recruitment/renewal equation[J]. Journal of Computational and Applied Mathematics, 2001, 136(1/2):343-356. [8] AMIRALIYEV G M, ERDOGAN F. Uniform numerical method for singularly perturbed delay differential equations[J]. Computers & Mathematics with Applications, 2007, 53(8):1251-1259. [9] ERDOGAN F. An exponentially fitted method for singularly perturbed delay differential equations[J]. Advances in Difference Equations, 2009,(1):781579. [10] AMIRALIYEVA I G, ERDOGAN F, AMIRALIYEV G M. A uniform numerical method for dealing with a singularly perturbed delay initial value problem[J]. Applied Mathematics Letters, 2010, 23(10):1221-1225. [11] KADALBAJOO M K, SHARMA K K. Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations[J]. Comput Appl Math, 2005, 24(2):151-172. [12] KADALBAJOO M K, SHARMA K K. A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations[J]. Applied Mathematics and Computation, 2008, 197(2):692-707. [13] KADALBAJOO M K, GUPTA V. A parameter uniform B-spline collocation method for solving singularly perturbed turning point problem having twin boundary layers[J]. International Journal of Computer Mathematics, 2010, 87(14):3218-3235. [14] RAI P, SHARMA K K. Numerical analysis of singularly perturbed delay differential turning point problem[J]. Applied Mathematics and Computation, 2011, 218(7):3483-3498. [15] PODILA R C, GUPTA T, RAO N. A numerical scheme for singularly perturbed delay differential equations of convection-diffusion type on an adaptive grid[J]. Mathematical Modelling and Analysis, 2018, 23(4):686-698. [16] AMIRALIYEV G M, CIMEN E. Numerical method for a singularly perturbed convection-diffusion problem with delay[J]. Applied Mathematics and Computation, 2010, 216(8):2351-2359. [17] DAS A, NATESAN S. Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh[J]. Applied Mathematics and Computation, 2015, 271:168-186. [18] PRAMOD CHAKRAVARTHY P, DINESH KUMAR S, NAGESHWAR RAO R. Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension[J]. International Journal of Applied and Computational Mathematics, 2017, 3(3):1703-1717. [19] VAID M K, ARORA G. Solution of second order singular perturbed delay differential equation using trigonometric B-spline[J]. International Journal of Mathematical, Engineering and Management Sciences, 2019, 4(2):349-360. [20] PODILA P C, KUMAR K. A class of finite difference schemes for singularly perturbed delay differential equations of second order[J]. Turkish Journal of Mathematics, 2019, 43(3):1061-1079. [21] MANIKANDAN M, SHIVARANJANI N, MILLER J J H, et al. A parameter-uniform numerical method for a boundary value problem for a singularly perturbed delay differential equation[M] //Springer Proceedings in Mathematics & Statistics. Cham: Springer, 2014:71-88. [22] DOOLAN E R, MILLER J J H, SCHILDERS W H A. Uniform numerical methods for problems with initial and bundary layers[M]. Dublin: Boole Press, 1980. [23] FARRELL P, HEGARTY A, MIUER J M, et al. Robust computational techniques for boundary layers[M]. New York: Chapman & Hall/CRC, 2000:37-55. [24] MILLER J H, O'RIORDAN E, SHISHKIN G I. Fitted numerical methods for singular perturbation problems[M]. Singapore: World Scientific Press, 1996:11-24. [25] KOPTEVA N. Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem[J]. SIAM Journal on Numerical Analysis, 2001, 39(2):423-441. [26] KOPTEVA N, STYNES M. A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem[J]. SIAM Journal on Numerical Analysis, 2001, 39(4):1446-1467. [27] LIU L B, CHEN Y P, LIANG Y. Numerical analysis of a nonlinear singularly perturbed delay Volterra integro-differential equation on an adaptive grid[J]. Journal of Computational Mathematics, 2022, 40(2):258-274. [28] YAPMAN Ö, KUDU M, AMIRALIYEV G M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem[J]. Mediterranean Journal of Mathematics, 2023, 20(3):146. [29] LONG G Q, LIU L B, HUANG Z T. Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations[J]. Numerical Functional Analysis and Optimization, 2021, 42(7):739-757. [30] YAPMAN Ö, AMIRALIYEV G M, AMIRALI I. Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay[J]. Journal of Computational and Applied Mathematics, 2019, 355:301-309. |
| [1] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
| [2] | 任师贤,安静. 球域上传输特征值问题的一种有效的谱逼近[J]. 《山东大学学报(理学版)》, 2023, 58(4): 8-15. |
| [3] | 李振平,余亚辉. 后验参数软化法求解Helmholtz方程柯西问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 77-84. |
| [4] | 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110. |
| [5] | 李维智,李宛珊,李建良. 等离子体模型ADI-FDTD格式的最大模误差估计及外推[J]. 《山东大学学报(理学版)》, 2021, 56(9): 96-110. |
| [6] | 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80. |
| [7] | 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73. |
| [8] | 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89. |
| [9] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
| [10] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
| [11] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
| [12] | 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126. |
| [13] | 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39. |
| [14] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
| [15] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
|