您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 84-93.doi: 10.6040/j.issn.1671-9352.0.2023.475

• • 上一篇    下一篇

带时滞项的二阶奇异摄动问题的自适应移动网格算法

许一诺1,刘利斌1*,杨秀2   

  1. 1.南宁师范大学广西应用数学中心, 广西 南宁 530100;2.山东大学数学与统计学院, 山东 威海 264209
  • 发布日期:2025-12-10
  • 通讯作者: 刘利斌(1982— ),男,教授,博士,研究方向为微分方程数值解. E-mail:liulibin969@163.com
  • 作者简介:许一诺(2000— ),女,硕士研究生,研究方向为微分方程数值解. E-mail:xyn897364770@163.com*通信作者:刘利斌(1982— ),男,教授,博士,研究方向为微分方程数值解. E-mail:liulibin969@163.com
  • 基金资助:
    国家自然科学基金资助项目(12361087);广西科技计划项目(桂科AD23023003);广西研究生教育创新计划项目(JGY2024267)

Adaptive moving grid method for a second-order singularly perturbed delay boundary value problem

XU Yinuo1, LIU Libin1*, YANG Xiu2   

  1. 1. Center for Applied Mathematics of Guangxi, Nanning Normal University, Nanning 530100, Guangxi, China;
    2. School of Mathematics and Statistics, Shandong University, Weihai 264209, Shandong, China
  • Published:2025-12-10

摘要: 研究一类带时滞项的二阶奇异摄动微分方程的自适应网格算法。首先,通过积分变换,得到一个带时滞项的一阶奇异摄动Volterra积分微分方程;其次,利用向后差分和左矩形公式,在任意网格上构造一个一阶有限差分格式,利用离散的Grönwall不等式,给出离散格式的先验误差估计,并基于网格等分布原理设计一个自适应移动网格算法,在该自适应网格下,证明离散格式为一阶一致收敛;最后,数值实验结果验证理论分析。

关键词: 奇异摄动, 时滞微分方程, 控制函数, 误差估计

Abstract: An adaptive grid algorithm for a second-order singularly perturbed delay boundary value problem is studied. Firstly, by integral transformation, the problem is rewritten into a first-order singularly perturbed delay Volterra integral differential equation. Secondly, a first-order finite difference format is constructed on an arbitrary mesh by using the backward difference and left rectangle formula. Using the discrete Grönwall inequality, a prior error estimation of the proposed discretization scheme is derived and an adaptive moving grid algorithm is designed based on the mesh equidistribution principle. It is proved that our proposed adaptive moving grid method is first-order uniformly convergent. Finally, some numerical results are given to support our presented theoretical result.

Key words: singularly perturbed, delay differential equation, monitor function, error estimation

中图分类号: 

  • O241
[1] BELLMAN R, COOKE K L. Differential-difference equations[M]. New York: Academic Press, 1963:155-171.
[2] DRIVER R D. Ordinary and Delay Differential Equations[M]. New York: Springer, 1977.
[3] BELLEN A, ZENNARO M. Numerical methods for delay differential equations[M]. Oxford: Clarendon Press, 2003.
[4] (·overE)L'SGOL'TS L(·overE). Qualitative methods in mathematical analysis[M]. Providence: American Mathematical Society, 1964.
[5] STEIN R B. A theoretical analysis of neuronal variability[J]. Biophysical Journal, 1965, 5(2):173-194.
[6] TUCKWELL H C. On the first-exit time problem for temporally homogeneous Markov processes[J]. Journal of Applied Probability, 1976, 13(1):39-48.
[7] MCCARTIN B J. Exponential fitting of the delayed recruitment/renewal equation[J]. Journal of Computational and Applied Mathematics, 2001, 136(1/2):343-356.
[8] AMIRALIYEV G M, ERDOGAN F. Uniform numerical method for singularly perturbed delay differential equations[J]. Computers & Mathematics with Applications, 2007, 53(8):1251-1259.
[9] ERDOGAN F. An exponentially fitted method for singularly perturbed delay differential equations[J]. Advances in Difference Equations, 2009,(1):781579.
[10] AMIRALIYEVA I G, ERDOGAN F, AMIRALIYEV G M. A uniform numerical method for dealing with a singularly perturbed delay initial value problem[J]. Applied Mathematics Letters, 2010, 23(10):1221-1225.
[11] KADALBAJOO M K, SHARMA K K. Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations[J]. Comput Appl Math, 2005, 24(2):151-172.
[12] KADALBAJOO M K, SHARMA K K. A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations[J]. Applied Mathematics and Computation, 2008, 197(2):692-707.
[13] KADALBAJOO M K, GUPTA V. A parameter uniform B-spline collocation method for solving singularly perturbed turning point problem having twin boundary layers[J]. International Journal of Computer Mathematics, 2010, 87(14):3218-3235.
[14] RAI P, SHARMA K K. Numerical analysis of singularly perturbed delay differential turning point problem[J]. Applied Mathematics and Computation, 2011, 218(7):3483-3498.
[15] PODILA R C, GUPTA T, RAO N. A numerical scheme for singularly perturbed delay differential equations of convection-diffusion type on an adaptive grid[J]. Mathematical Modelling and Analysis, 2018, 23(4):686-698.
[16] AMIRALIYEV G M, CIMEN E. Numerical method for a singularly perturbed convection-diffusion problem with delay[J]. Applied Mathematics and Computation, 2010, 216(8):2351-2359.
[17] DAS A, NATESAN S. Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh[J]. Applied Mathematics and Computation, 2015, 271:168-186.
[18] PRAMOD CHAKRAVARTHY P, DINESH KUMAR S, NAGESHWAR RAO R. Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension[J]. International Journal of Applied and Computational Mathematics, 2017, 3(3):1703-1717.
[19] VAID M K, ARORA G. Solution of second order singular perturbed delay differential equation using trigonometric B-spline[J]. International Journal of Mathematical, Engineering and Management Sciences, 2019, 4(2):349-360.
[20] PODILA P C, KUMAR K. A class of finite difference schemes for singularly perturbed delay differential equations of second order[J]. Turkish Journal of Mathematics, 2019, 43(3):1061-1079.
[21] MANIKANDAN M, SHIVARANJANI N, MILLER J J H, et al. A parameter-uniform numerical method for a boundary value problem for a singularly perturbed delay differential equation[M] //Springer Proceedings in Mathematics & Statistics. Cham: Springer, 2014:71-88.
[22] DOOLAN E R, MILLER J J H, SCHILDERS W H A. Uniform numerical methods for problems with initial and bundary layers[M]. Dublin: Boole Press, 1980.
[23] FARRELL P, HEGARTY A, MIUER J M, et al. Robust computational techniques for boundary layers[M]. New York: Chapman & Hall/CRC, 2000:37-55.
[24] MILLER J H, O'RIORDAN E, SHISHKIN G I. Fitted numerical methods for singular perturbation problems[M]. Singapore: World Scientific Press, 1996:11-24.
[25] KOPTEVA N. Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem[J]. SIAM Journal on Numerical Analysis, 2001, 39(2):423-441.
[26] KOPTEVA N, STYNES M. A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem[J]. SIAM Journal on Numerical Analysis, 2001, 39(4):1446-1467.
[27] LIU L B, CHEN Y P, LIANG Y. Numerical analysis of a nonlinear singularly perturbed delay Volterra integro-differential equation on an adaptive grid[J]. Journal of Computational Mathematics, 2022, 40(2):258-274.
[28] YAPMAN Ö, KUDU M, AMIRALIYEV G M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem[J]. Mediterranean Journal of Mathematics, 2023, 20(3):146.
[29] LONG G Q, LIU L B, HUANG Z T. Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations[J]. Numerical Functional Analysis and Optimization, 2021, 42(7):739-757.
[30] YAPMAN Ö, AMIRALIYEV G M, AMIRALI I. Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay[J]. Journal of Computational and Applied Mathematics, 2019, 355:301-309.
[1] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[2] 任师贤,安静. 球域上传输特征值问题的一种有效的谱逼近[J]. 《山东大学学报(理学版)》, 2023, 58(4): 8-15.
[3] 李振平,余亚辉. 后验参数软化法求解Helmholtz方程柯西问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 77-84.
[4] 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110.
[5] 李维智,李宛珊,李建良. 等离子体模型ADI-FDTD格式的最大模误差估计及外推[J]. 《山东大学学报(理学版)》, 2021, 56(9): 96-110.
[6] 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80.
[7] 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73.
[8] 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89.
[9] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[10] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[11] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[12] 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126.
[13] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[14] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[15] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85 -90 .
[2] 王继强, . 一类median问题的近似算法研究[J]. J4, 2006, 41(4): 1 -03 .
[3] 谢云龙,杜英玲 . 函数S-粗集与规律积分度量[J]. J4, 2007, 42(10): 118 -122 .
[4] 姜 楠,许玉铭 . 关于f-最大集及其性质[J]. J4, 2007, 42(6): 52 -54 .
[5] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[6] 左进明. 五阶色散方程的一类交替分组方法[J]. J4, 2009, 44(4): 79 -83 .
[7] 赵 蕊,霍贵成* . 新疆酸奶子中乳酸菌多样性分析[J]. J4, 2008, 43(7): 18 -22 .
[8] 于静之,陈焕贞,刘祥忠 . 非定常Stokes方程混合有限元方法[J]. J4, 2008, 43(10): 85 -90 .
[9] 刘冰 陆玮洁 杨国生. 遗传算法在烷基硝基苯酚类化合物的QSRR中的应用[J]. J4, 2009, 44(9): 8 -11 .
[10] 王凤雨. 随机一般多孔介质与快速扩散方程[J]. J4, 2009, 44(10): 1 -3 .