《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 77-84.doi: 10.6040/j.issn.1671-9352.0.2022.304
李振平1,2,余亚辉1*
LI Zhen-ping1,2, YU Ya-hui1*
摘要: 为了恢复解的稳定性,提出一种基于Gauss核的后验参数软化正则化方法,得到精确解与近似解之间的稳定性误差估计,并作数值实验,验证了该方法的有效性。
中图分类号:
[1] REGINSKA T, REGINSKI K. Approximate solution of a Cauchy problem for the Helmholtz equation[J]. Inverse Probl, 2006, 22(3):975-989. [2] FENG Xiaoli, FU Chuli, CHENG Hao. A regularization method for solving the Cauchy problem for the Helmholtz equation[J]. Appl Math Model, 2011, 35(7):3301-3315. [3] XIONG Xiangtuan, FU Chuli. Two approximate methods of a Cauchy problem for the Helmholtz equation[J]. Comput Appl Math, 2007, 26(2):285-307. [4] ZHANG H W, QIN H H, WEI T. A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation[J]. Int J Comput Math, 2011, 88(4):839-850. [5] QIN H H, WEI T. Two regularization methods for the Cauchy problems of the Helmholtz equation[J]. Appl Math Model, 2010, 34(4):947-967. [6] REGINSKA T. Regularization methods for a mathematical model of laser beams[J]. Eur J Math Comput Appl, 2014, 1(2):39-49. [7] ZHANG Yuanxiang, FU Chuli, DENG Zhiliang. An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations[J]. Inverse Prob Sci Eng, 2013, 21(7):1151-1168. [8] FU Chuli, FENG Xiaoli, QIAN Zhi. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J]. Appl Numer Math, 2009, 59(10):2625-2640 [9] QIAN Ailin, XIONG Xiangtuan, WU Yujiang. On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1969-1979. [10] XIONG Xiangtuan. A regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1723-1732. [11] HE Shangqin, FENG Xiufang. A mollification regularization method with the Dirichlet kernel for two Cauchy problems of three-dimensional Helmholtz equation[J]. Int J Comput Math, 2020, 97(11):2320-2336. [12] HE Shangqin, DI Congna, YANG Li. The mollification method based on a modified operator to the ill-posed problem for 3D Helmholtz equation with mixed boundary[J]. Appl Numer Math, 2021, 160:422-435. [13] LI Zhenping, XU Chao, LAN Man, et al. A mollification method for a Cauchy problem for the Helmholtz equation[J]. Int J Comput Math, 2018, 95(11):2256-2268. [14] QIAN Zhi, FENG Xiaoli. A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation[J]. Appl Anal, 2017, 96(10):1656-1668. [15] DINH N H. A mollification method for ill-posed problems[J]. Numer Math, 1994, 68(4):469-506. [16] DINH N H, DUC N. Stability results for the heat equation backward in time[J]. J Math Anal Appl, 2009, 353(2):627-641. [17] MURIO D A. The mollification method and the numerical solution of ill-posed problems[M]. New York: John Wiley and Sons Inc, 1993: 60-130. [18] YANG Fan, FU Chuli. A mollification regularization method for the inverse spatial-dependent heat source problem[J]. J Comput Appl Math, 2014, 255:555-567. [19] 邓志亮. 两类不适定问题的正则化方法研究[D]. 兰州: 兰州大学, 2010. DENG Zhiliang. The study of the regularization methods for two classes of ill-posed problems[D]. Lanzhou: Lanzhou University, 2010. [20] 丁凤霞, 程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2):18-24. DING Fengxia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation[J]. Journal of Shandong University(Natural Science), 2018, 53(2):18-24. [21] QIAN Zhi, FENG Xiaoli. Numerical solution of a 2D inverse heat conduction problem[J]. Inverse Probl Sci Eng, 2013, 21(3):467-484. |
[1] | 李维智,李宛珊,李建良. 等离子体模型ADI-FDTD格式的最大模误差估计及外推[J]. 《山东大学学报(理学版)》, 2021, 56(9): 96-110. |
[2] | 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80. |
[3] | 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73. |
[4] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[5] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
[6] | 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126. |
[7] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[8] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[9] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[10] | 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63. |
[11] | 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39. |
[12] | 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25. |
[13] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[14] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
[15] | 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28. |
|