《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 60-71.doi: 10.6040/j.issn.1671-9352.0.2024.061
秦佳欣,李淑萍*
QIN Jiaxin, LI Shuping*
摘要: 考虑媒体宣传和人与人之间的信息传播,在复杂网络上建立了具有2类易感仓室的易感者-暴露者-感染者-康复者(susceptible-exposed-infectious-removed, SEIR)模型,研究自我防护意识对于传染病传播的影响。得到了基本再生数R0,并且证明了当R0>1时,有唯一的地方病平衡点。根据Hurwitz判据和比较定理,分析了无病平衡点的稳定性,证明了当R0>1时,疾病是一致持续的。利用敏感性分析确定了参数对于R0的重要性。数值模拟表明,提高自我防护意识可以有效降低被感染的概率。
中图分类号:
[1] YUAN Xinpeng, XUE Yakui, LIU Maoxing. Analysis of an epidemic model with awareness programs by media on complex networks[J]. Chaos, Solitons & Fractals, 2013, 48:1-11. [2] WANG Yi, CAO Jinde, JIN Zhen, et al. Impact of media coverage on epidemic spreading in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23):5824-5835. [3] YAN Qinling, TANG Sanyi, GABRIELE S, et al. Media coverage and hospital notifications: correlation analysis and optimal media impact duration to manage a pandemic[J]. Journal of Theoretical Biology, 2016, 390:1-13. [4] MISRA A K, RAI R K, TAKEUCHI Y. Modeling the control of infectious diseases: effects of TV and social media advertisements[J]. Mathematical Biosciences Engineering, 2018, 15(6):1315-1343. [5] 贺树树,刘茂省.复杂网络中媒体报道对疾病传播的影响[J].数学的实践与认识,2020,50(21):65-73. HE Shushu, LIU Maoxing. The impact of media coverage on disease transmission in complex networks[J]. Mathematics in Practice and Theory, 2020, 50(21):65-73. [6] 刘志华,曹慧.具有媒体报道和时滞效应的SEIR模型动力学分析[J].陕西科技大学学报,2022,40(2):201-206. LIU Zhihua, CAO Hui. Dynamics analysis of SEIR model with media coverage and time delay effect[J]. Journal of Shaanxi University of Science and Technology, 2022, 40(2):201-206. [7] 徐忠朴,李科赞.一类含个体意识的SIS网络传播模型的分析[J].桂林电子科技大学学报,2014,34(6):503-508. XU Zhongpu, LI Kezan. Analysis of an SIS network propagation model with individual consciousness[J]. Journal of Guilin University of Electronic Science and Technology, 2014, 34(6):503-508. [8] SHANTA S S, BISWAS M H A. The impact of media awareness in controlling the spread of infectious diseases in terms of SIR model[J]. Mathematical Modelling of Engineering Problems, 2020, 7(3):368-376. [9] XIE Jingli, GUO Hongli, ZHANG Meiyang. Dynamics of an SEIR model with media coverage mediated nonlinear infectious force[J]. Mathematical Biosciences Engineering, 2023, 20(8):14616-14633. [10] LIU Maoxing, HE Shushu, SUN Yongzheng. The impact of media converge on complex networks on disease transmission[J]. Mathematical Biosciences Engineering, 2019, 16:6335-6349. [11] SAMANTA S, RANA S, SHARMA A, et al. Effect of awareness programs by media on the epidemic outbreaks: a mathematical model[J]. Applied Mathematics and Computation, 2013, 219(12):6965-6977. [12] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社,2004. MA Zhieng, ZHOU Yicang, WANG Wendi, et al. Mathematical modeling and research of infectious disease dynamics [M]. Beijing: Science Press, 2004. [13] THIEME H R. Persistence under relaxed point-dissipativity(with application to an endemic model)[J]. SIAM Journal on Mathematical Analysis, 1993, 24(2):407-435. [14] LEENHEER P D E, SMITH H A L L. Virus dynamics: a global analysis[J]. Siam Journal on Applied Mathematics, 2003, 63(4):1313-1327. [15] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48. [16] 靳祯,孙桂全,刘茂省. 网络传染病动力学建模与分析[M]. 北京:科学出版社,2014. JIN Zhen, SUN Guiquan, LIU Maoxing. Modeling and analysis of network infectious disease dynamics[M]. Beijing: Science Press, 2014. [17] 马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001. MA Zhieng, ZHOU Yicang. Qualitative and stability methods for ordinary differential equations[M]. Beijing: Science Press, 2001. |
[1] | 李璐,张瑞霞. 一类具有双垂直传播和媒介呈Logistic增长的媒介传染病模型[J]. 《山东大学学报(理学版)》, 2025, 60(4): 93-103. |
[2] | 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49. |
[3] | 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28. |
[4] | 王毅,韩志敏,李思琦. 个体免疫和群体传播的多尺度耦合网络传染病模型动力学研究进展[J]. 《山东大学学报(理学版)》, 2025, 60(4): 1-19. |
[5] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
[6] | 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97. |
[7] | 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39. |
[8] | 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88. |
[9] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[10] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[11] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[12] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[13] | 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96. |
[14] | 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28. |
[15] | 马维元,李志明,代常平. 基于变量替换控制的分数阶复杂网络拓扑识别[J]. 《山东大学学报(理学版)》, 2023, 58(11): 53-60. |
|