您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 60-71.doi: 10.6040/j.issn.1671-9352.0.2024.061

• • 上一篇    下一篇

复杂网络中带有自我防护意识的SEIR模型分析

秦佳欣,李淑萍*   

  1. 中北大学数学学院, 山西 太原 030051
  • 出版日期:2025-04-20 发布日期:2025-04-08
  • 通讯作者: 李淑萍(1979— ),女,副教授,硕士生导师,博士,研究方向为生物数学复杂网络. E-mail:lspnuc@126.com
  • 作者简介:秦佳欣(1999— ),女,硕士研究生,研究方向为生物数学复杂网络. E-mail:13007035925@163.com*通信作者:李淑萍(1979— ),女,副教授,硕士生导师,博士,研究方向为生物数学复杂网络. E-mail:lspnuc@126.com
  • 基金资助:
    国家自然科学基金资助项目(11701528,12101574,12001501);山西省自然科学基金资助项目(20210302124621,20210302123018)

Analysis of SEIR model with self-protection awareness in complex networks

QIN Jiaxin, LI Shuping*   

  1. School of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
  • Online:2025-04-20 Published:2025-04-08

摘要: 考虑媒体宣传和人与人之间的信息传播,在复杂网络上建立了具有2类易感仓室的易感者-暴露者-感染者-康复者(susceptible-exposed-infectious-removed, SEIR)模型,研究自我防护意识对于传染病传播的影响。得到了基本再生数R0,并且证明了当R0>1时,有唯一的地方病平衡点。根据Hurwitz判据和比较定理,分析了无病平衡点的稳定性,证明了当R0>1时,疾病是一致持续的利用敏感性分析确定了参数对于R0的重要性。数值模拟表明,提高自我防护意识可以有效降低被感染的概率。

关键词: 自我防护意识, 复杂网络, 稳定性, 一致持续, 敏感性分析

Abstract: By considering media publicity and information dissemination among people, we establish an SEIR(susceptible-exposed-infectious-removed,)model with two types of susceptible compartments on complex networks to study the impact of self-protection awareness on the spread of infectious diseases. The basic reproduction number R0 is obtained by calculation, and it is proved that there is a unique endemic equilibrium point when R0>1. According to Hurwitz criterion and comparison theorem, the stability of the disease-free equilibrium is analyzed. Then it is proved that the disease is uniformly persistent when R0>1. Sensitivity analysis determines the importance of parameters for R0. Numerical simulation shows that improving self-protection awareness can effectively reduce the probability of being infected.

Key words: self-protection awareness, complex network, stability, uniform persistence, sensitivity analysis

中图分类号: 

  • O175
[1] YUAN Xinpeng, XUE Yakui, LIU Maoxing. Analysis of an epidemic model with awareness programs by media on complex networks[J]. Chaos, Solitons & Fractals, 2013, 48:1-11.
[2] WANG Yi, CAO Jinde, JIN Zhen, et al. Impact of media coverage on epidemic spreading in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23):5824-5835.
[3] YAN Qinling, TANG Sanyi, GABRIELE S, et al. Media coverage and hospital notifications: correlation analysis and optimal media impact duration to manage a pandemic[J]. Journal of Theoretical Biology, 2016, 390:1-13.
[4] MISRA A K, RAI R K, TAKEUCHI Y. Modeling the control of infectious diseases: effects of TV and social media advertisements[J]. Mathematical Biosciences Engineering, 2018, 15(6):1315-1343.
[5] 贺树树,刘茂省.复杂网络中媒体报道对疾病传播的影响[J].数学的实践与认识,2020,50(21):65-73. HE Shushu, LIU Maoxing. The impact of media coverage on disease transmission in complex networks[J]. Mathematics in Practice and Theory, 2020, 50(21):65-73.
[6] 刘志华,曹慧.具有媒体报道和时滞效应的SEIR模型动力学分析[J].陕西科技大学学报,2022,40(2):201-206. LIU Zhihua, CAO Hui. Dynamics analysis of SEIR model with media coverage and time delay effect[J]. Journal of Shaanxi University of Science and Technology, 2022, 40(2):201-206.
[7] 徐忠朴,李科赞.一类含个体意识的SIS网络传播模型的分析[J].桂林电子科技大学学报,2014,34(6):503-508. XU Zhongpu, LI Kezan. Analysis of an SIS network propagation model with individual consciousness[J]. Journal of Guilin University of Electronic Science and Technology, 2014, 34(6):503-508.
[8] SHANTA S S, BISWAS M H A. The impact of media awareness in controlling the spread of infectious diseases in terms of SIR model[J]. Mathematical Modelling of Engineering Problems, 2020, 7(3):368-376.
[9] XIE Jingli, GUO Hongli, ZHANG Meiyang. Dynamics of an SEIR model with media coverage mediated nonlinear infectious force[J]. Mathematical Biosciences Engineering, 2023, 20(8):14616-14633.
[10] LIU Maoxing, HE Shushu, SUN Yongzheng. The impact of media converge on complex networks on disease transmission[J]. Mathematical Biosciences Engineering, 2019, 16:6335-6349.
[11] SAMANTA S, RANA S, SHARMA A, et al. Effect of awareness programs by media on the epidemic outbreaks: a mathematical model[J]. Applied Mathematics and Computation, 2013, 219(12):6965-6977.
[12] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社,2004. MA Zhieng, ZHOU Yicang, WANG Wendi, et al. Mathematical modeling and research of infectious disease dynamics [M]. Beijing: Science Press, 2004.
[13] THIEME H R. Persistence under relaxed point-dissipativity(with application to an endemic model)[J]. SIAM Journal on Mathematical Analysis, 1993, 24(2):407-435.
[14] LEENHEER P D E, SMITH H A L L. Virus dynamics: a global analysis[J]. Siam Journal on Applied Mathematics, 2003, 63(4):1313-1327.
[15] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[16] 靳祯,孙桂全,刘茂省. 网络传染病动力学建模与分析[M]. 北京:科学出版社,2014. JIN Zhen, SUN Guiquan, LIU Maoxing. Modeling and analysis of network infectious disease dynamics[M]. Beijing: Science Press, 2014.
[17] 马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001. MA Zhieng, ZHOU Yicang. Qualitative and stability methods for ordinary differential equations[M]. Beijing: Science Press, 2001.
[1] 李璐,张瑞霞. 一类具有双垂直传播和媒介呈Logistic增长的媒介传染病模型[J]. 《山东大学学报(理学版)》, 2025, 60(4): 93-103.
[2] 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49.
[3] 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28.
[4] 王毅,韩志敏,李思琦. 个体免疫和群体传播的多尺度耦合网络传染病模型动力学研究进展[J]. 《山东大学学报(理学版)》, 2025, 60(4): 1-19.
[5] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[6] 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97.
[7] 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39.
[8] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[9] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[10] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[11] 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81.
[12] 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59.
[13] 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96.
[14] 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28.
[15] 马维元,李志明,代常平. 基于变量替换控制的分数阶复杂网络拓扑识别[J]. 《山东大学学报(理学版)》, 2023, 58(11): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!