您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 20-28.doi: 10.6040/j.issn.1671-9352.0.2023.369

• • 上一篇    

捕食者斑块间扩散的集合种群模型的稳定性分析

买阿丽1,孙国伟1,2*   

  1. 1.运城学院数学与信息技术学院, 山西 运城 044000;2.山西大学复杂系统研究所, 山西 太原 030006
  • 发布日期:2025-04-08
  • 通讯作者: 孙国伟(1980— ),男,教授,博士,研究方向为生物数学. E-mail:sunkanry@163.com
  • 作者简介:买阿丽(1981— ),女,教授,博士,研究方向为微分方程理论及其应用. E-mail:maialiy@126.com*通信作者:孙国伟(1980— ),男,教授,博士,研究方向为生物数学. E-mail:sunkanry@163.com
  • 基金资助:
    国家自然科学基金资助项目(12101547);山西省回国留学人员科研资助项目(2021-149);山西省高校科技创新项目(2020L0551);运城学院学科建设资助项目(XK2023-004)

Stability analysis of predator-prey metacommunity model with predator dispersal between patches

MAI Ali1, SUN Guowei1,2*   

  1. 1. School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, Shanxi, China;
    2. Complex System Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
  • Published:2025-04-08

摘要: 建立具有捕食者扩散时滞和扩散损耗的捕食-食饵种群斑块模型,分析模型共存平衡点的稳定性,并证明在大多数情况下,捕食者斑块间的扩散时滞不会影响共存平衡点的稳定性。但当扩散率和扩散损耗满足一定条件时,扩散时滞导致系统出现稳定开关现象。最后通过数值模拟验证理论结果的正确性。

关键词: 集合种群, 平衡点, 扩散, 斑块, 稳定性

Abstract: A predator-prey patchy model with the dispersal delay and the population loss during the dispersal of the predator is established. The stability of the coexistence equilibrium is analyzed. Our results show that the dispersal delay of the predator does not affect the stability of the coexistence equilibrium in most cases. But it can induce stability switches under some conditions of the dispersal rate and population loss. Finally, numerical simulations are presented to demonstrate the correctness of the theoretical results.

Key words: metacommunity, equilibrium, dispersal, patch, stability

中图分类号: 

  • O175
[1] JANSEN V. The dynamics of two diffusively coupled predator-prey populations[J]. Theoretical Population Biology, 2001, 59(2):119-131.
[2] XIAO Siheng, WANG Yuanshi, WANG Shikun, Effects of preys diffusion on predator-prey systems with two patches[J]. Bulletin of Mathematical Biology, 2021, 83(45):1-21.
[3] XIA Yue, CHEN Lijuan, SRIVASTAVA V, et al. Stability and bifurcation analysis of a two-patch model with the Allee effect and dispersal[J]. Mathematical Biosciences and Engineering, 2023, 20(11):19781-19807.
[4] HUFFAKER C, KENNETT C. Experimental studies on predation:predation and cyclamen-mite populations on strawberries in California[J]. Hilgardia, 1956, 26(4):191-222.
[5] KANG Yun, SASMAL S, MESSAN K. A two-patch prey-predator model with predator dispersal driven by the predation strength[J]. Mathematical Biosciences & Engineering, 2017, 14(4):843-880.
[6] FENG Wei, HINSON J. Stability and pattern in two-patch predator-prey population dynamics[J]. Discrete and Continuous Dynamical Systems, 2005, 2005:268-279.
[7] SAHA S, SAMANTA G. Influence of dispersal and strong Allee effect on a two-patch predator-prey model[J]. International Journal of Dynamics and Control, 2019, 7:1321-1349.
[8] HUANG Rong, WANG Yuanshi, WU Hong. Population abundance in predator-prey systems with predators dispersal between two patches[J]. Theoretical Population Biology, 2020, 135:1-8.
[9] HAUZY C, GAUDUCHON M, HULOT F, et al. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities[J]. Journal of Theoretical Biology, 2010, 266(3):458-469.
[10] LIAO Kangling, LOU Yuan. The effect of time delay in a two-patch model with random dispersal[J]. Bulletin of Mathematical Biology, 2014, 76:335-376.
[11] ZHANG Chunmei, SHI Lin. Graph-theoretic method on the periodicity of coupled predator-prey systems with infinite delays on a dispersal network[J]. Physica A: Statistical Mechanics and its Applications, 2021, 561:125-255.
[12] ZHANG Yuxiang, LUTSCHER F, GUICHARD F. The effect of predator avoidance and travel time delay on the stability of predator-prey metacommunities[J]. Theoretical Ecology, 2015, 8(3):273-283.
[13] MAI Ali, SUN Guowei, ZHANG Fengqin, et al. The joint impacts of dispersal delay and dispersal patterns on the stability of predator-prey metacommunities[J]. Journal of Theoretical Biology, 2019, 462:455-465.
[14] MAI Ali, SUN Guowei, WANG Lin. Impacts of the dispersal delay on the stability of the coexistence equilibrium of a two-patch predator-prey model with random predator dispersal[J]. Bulletin of Mathematical Biology, 2019, 81(5):1337-1351.
[15] SUN Guowei, MAI Ali. Stability switches in a ring-structured predator-prey metapopulation model with dispersal delay[J]. Advances in Difference Equation, 2020, 2020(196):1-19.
[16] MAI Ali, SUN Guowei, WANG Lin. Effects of dispersal on competitive coexistence in a two-patch competition model[J]. Mathematical Methods in the Applied Sciences, 2023, 46:10527-10539.
[17] COOKE K, GROSSMAN Z. Discrete delay, distributed delay and stability switches[J]. Journal of Mathematical Analysis and Applications, 1982, 86(2):592-627.
[18] KUANG Yang. Delay differential equations: with applications in population dynamics[M]. Boston:Academic Press, 1993.
[19] HALE J, LUNEL S. Introduction to functional differential equations[M]. New York: Springer Science & Business Media, 1993.
[1] 张赵柳,范小明. 广义分数布朗运动下的双重Heston跳扩散模型欧式期权定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 60-68.
[2] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[3] 苗卉,夏米西努尔·阿布都热合曼. 具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析[J]. 《山东大学学报(理学版)》, 2024, 59(4): 90-97.
[4] 阿迪力·艾力,开依沙尔·热合曼. 求解广义Burgers-Fisher方程的微分求积法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 30-39.
[5] 艾露露,刘蕴贤. 半导体问题漂移扩散模型的超弱间断Galerkin方法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 10-21.
[6] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[7] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[8] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[9] 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81.
[10] 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59.
[11] 刘云,朱鹏俊,陈路遥,宋凯. 基于边缘计算的收益激励算法对区块链分片的优化[J]. 《山东大学学报(理学版)》, 2023, 58(7): 88-96.
[12] 黄钰,高广花. 第三类Dirichlet边界下四阶抛物方程的紧差分格式[J]. 《山东大学学报(理学版)》, 2023, 58(4): 16-28.
[13] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[14] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[15] 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!