《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 60-68.doi: 10.6040/j.issn.1671-9352.0.2024.277
张赵柳,范小明*
ZHANG Zhaoliu, FAN Xiaoming*
摘要: 首先在风险中性概率测度下提出基于广义分数布朗运动的双重Heston跳扩散模型,并通过求解特征函数的偏微分方程组推出该模型相应欧式看涨期权定价公式。通过蒙特卡罗模拟验证欧式期权定价公式的准确性,通过数值分析验证所建立的期权定价模型的合理性和有效性,并讨论广义分数布朗运动参数H及波动率等对期权价格的影响。
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [2] MANDELBROT B B, VAN N J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4):422-437. [3] BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Sub-fractional Brownian motion and its relation to occupation times[J]. Statistics & Probability Letters, 2004, 69(4):405-419. [4] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2):125-144. [5] 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 山东大学学报(理学版),2022,57(4):100-110. AN Xiang, GUO Jingjun. Pricing and simulation of lookback options under the mix sub-fractional jump-diffusion model[J]. Journal of Shandong University(Natural Science), 2022, 57(4):100-110. [6] CHENG Panhong, XU Zhihong, DAI Zexing. Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment[J]. Mathematics and Financial Economics, 2023, 17(3):429-455. [7] JI Binxin, TAO Xiangxing, JI Yanting. Barrier option pricing in the sub-mixed fractional Brownian motion with jump environment[J]. Fractal and Fractional, 2022, 6(5):244. [8] CHRISTOFFERSEN P, HESTON S, JACOBS K. The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well[J]. Management Science, 2009, 55(12):1914-1932. [9] CHANG Ying, WANG Yiming, ZHANG Sumei. Option pricing under double Heston jump-diffusion model with approximative fractional stochastic volatility[J]. Mathematics, 2021, 9(2):126. [10] ZILI M. Generalized fractional Brownian motion[J]. Modern Stochastics: Theory and Applications, 2017, 4(1):15-24. [11] ARANEDA A A. Price modelling under generalized fractional Brownian motion[EB/OL].(2021-08-21)[2024-08-05].http://arxiv.org/abs/2108.12042. [12] GUO Jingjun, WANG Yubing, KANG Weiyi. Pricing European option under the generalized fractional jump-diffusion model[J]. Fractional Calculus and Applied Analysis, 2024, 27(4):1917-1947. [13] 吴胤昊,陈荣达,汪圣楠. 随机利率随机波动率混合指数跳扩散模型下的期权定价[J]. 系统科学与数学,2022,42:2207-2234. WU Yinhao, CHEN Rongda, WANG Shengnan. Option pricing under the mixed-exponential jump diffusion model with stochastic internet rate and stochastic volatility[J]. Journal of Systems Science and Mathematical, 2022, 42:2207-2234. [14] DUFFIE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376. |
[1] | 张亚茹,夏莉,张典秋. 混合双分数布朗运动下的永久美式回望期权定价[J]. 《山东大学学报(理学版)》, 2024, 59(4): 98-107. |
[2] | 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 《山东大学学报(理学版)》, 2022, 57(4): 100-110. |
[3] | 彭波,郭精军. 在跳环境和混合高斯过程下的资产定价及模拟[J]. 《山东大学学报(理学版)》, 2020, 55(5): 105-113. |
[4] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[5] | 李国成,王继霞. 交叉熵蝙蝠算法求解期权定价模型参数估计问题[J]. 《山东大学学报(理学版)》, 2018, 53(12): 80-89. |
[6] | 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119. |
[7] | 张慧1,2,孟纹羽1,来翔3. 不确定环境下障碍再装期权的动态定价模型 ——基于BSDE解的期权定价方法[J]. J4, 2011, 46(3): 52-57. |
[8] | 苗杰1,师恪2,蔡华1. 跳扩散模型下的可分离债券的定价[J]. J4, 2010, 45(8): 109-117. |
[9] | 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114. |
[10] | 孙 鹏,张 蕾,赵卫东 . 美式期权定价问题的一类有限体积数值模拟方法[J]. J4, 2007, 42(6): 1-06 . |
[11] | 孙 鹏,赵卫东 . 亚式期权定价问题的交替方向迎风有限体积方法[J]. J4, 2007, 42(6): 16-21 . |
|